文章
· 三月 19, 2024 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - 检查索引的完整性

Caché/IRIS的特点是运行Global的修改,而这个修改和SQL是无关的,因此非常容易出现数据库表数据完整性的问题,也就是表中的数据是不是符合定义的表约束。

这样的情况非常常见。有些是人为的对Global的错误修改, 有些是应用系统的事务性管理写的不对,造成事务回滚的时候破坏了索引的完整性。无论什么原因,只要使用Global操作,破坏SQL的完整性非常难以避免。结果就是SQL查询给出错误结果。

最简单的解决方法就是执行“索引检查(Validate Indices)"

我们来做个实验

- 先修改一个global: 如下图, 将Patient表的一个记录的SEX字段,从'M'改到‘F'.

运行索引检查, 结果会提示您问题在什么地方。

1 0
0 78
文章
· 三月 19, 2024 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - SQL优化器使用的统计数据

上个帖子写了TuneTable的执行, 提到了SQL优化器使用的那些统计数据, 这里逐一的介绍一下这些统计项。了解它们看懂和分析SQL执行计划的基础。 如果您不需要做单个查询的优化工作,可以调过这部分内容。

表的统计项

  • Extent Size: 表的大小,也就是记录数。在执行多表关联(JOIN)的查询时,SQL优化器会根据Extent Size值,从数据量最小的表来开始执行查询。

您还需要了解:表创建的时候Extent Size会获得一个初始值,而之后的插入修改数据并不自动修改这个值。而只有执行TuneTable才会修改这个。 这也就是为什么没有执行过TuneTable的数据库SQL性能好不了的原因。下图中的Patient表,可以看出有1,000,000记录

0 0
0 134
文章
· 三月 19, 2024 阅读大约需 2 分钟
IRIS/Caché SQL优化经验分享

IRIS/Caché查询慢,主要原因有以下几个:

  • 应用是一个事务型的数据库, 数据模型的设计不适合某些复杂的分析查询

这是慢的原因,不是慢的离谱的原因。数据模型是产品设计的范畴, 这里不讨论, 本文只讨论优化。

  • 历史原因,有些表的索引不够优化

虽然还是设计问题,但可以在实施中或者维护中给出优化方案。

  • 产品运行中的问题造成的查询效率下降

IRIS/Caché数据平台的一个特点是允许跳过SQL约束,对底层数据的直接修改。坏的代码或者应用可能破坏表数据和表索引的约束,造成SQL性能的下降。维护人员应该知道怎么避免,和处理这样的问题。

  • 维护工作缺乏造成

比如Tune Table(调整表), 这是必须做的工作,但可惜很有些项目没有执行过。

0 0
1 182
文章
· 三月 18, 2024 阅读大约需 4 分钟
IRIS/Caché SQL优化经验分享 - Tune Table

TuneTable(调整表)收集数据库中表的统计信息,用来为SQL引擎制定最优的执行计划。在其他数据库产品里,这个动作被称为“gather stats job"或者类似的名字,相比较TuneTable不是那么直白,但作用是一样的。

TuneTable是否要人工执行

一定要。

在IRIS 2023版本, 第一次加入了TuneTable的自动执行功能,在此之前的所有IRIS/Caché版本, 如果没有人工执行TuneTable, SQL引擎无法保证给出最好的查询计划。 即使是IRIS2023有了自动执行功能,也还需要人工执行TuneTable的操作,后面解释。

1 0
0 139
文章
· 三月 17, 2024 阅读大约需 12 分钟
生成式大语言模型和检索增强生成

近来生成式大语言模型掀起了革命性的AI浪潮。生成式大语言模型是什么原理?我们怎么在业务中利用它?

一. 大语言模型的工作原理

生成式大语言模型是生成式人工智能底层的机器学习模型,是一种用于自然语言处理的深度学习模型。

人工智能、机器学习与大语言模型的关系如下图:

1.1 为什么我们称之为大语言模型?

大语言模型的“大”体现在多个方面:

2 0
0 602
文章
· 三月 16, 2024 阅读大约需 10 分钟
IRIS 2024.1新特性 - JSON_TABLE

IRIS 2024.1已经发布,它引入了诸多新特性,其中之一是JSON_TABLE。

数据表达和交换中,JSON已经是日益主流的存在。在之前的IRIS版本中,可以轻易将JSON数据以对象解析并保存到IRIS,也可以将IRIS数据使用SQL、对象等多种方式输出为JSON。对于得到的JSON序列化的数据,如果我们想通过SQL去解析,甚至进行检索和查询,就可以利用JSON_TABLE这个新特性。

对于一些大规模的JSON序列化数据,例如从FHIR服务器查询获得的FHIR资源Bundle,里面包含了大量数据。例如下面的FHIR查询结果,后面的示例以这个的复杂的JSON作为用例:

0 0
0 73
文章
· 二月 18, 2024 阅读大约需 11 分钟
向量搜索和 RAG(检索增强生成)模型

1. IRIS RAG Demo

IRIS RAG Demo

这是 IRIS 与 RAG(检索增强生成)示例的一个简单演示。
后端是使用 IRIS 和 IoP用 Python 编写的,LLM 模型是 orca-mini 并由 ollama 服务器提供。
前端是用 Streamlit 编写的聊天机器人。

0 1
0 422
文章
· 三月 14, 2024 阅读大约需 6 分钟
教程:将 OpenAI 添加到互操作性生产中

人工智能(AI)最近受到广泛关注,因为它可以改变我们生活的许多领域。更好的计算机能力和更多数据帮助人工智能完成了许多惊人的事情,例如改进医学测试和制造自动驾驶汽车。人工智能还可以帮助企业做出更好的决策,提高工作效率,这也是人工智能越来越流行和广泛应用的原因。如何将 OpenAI API 调用集成到现有的 IRIS 互操作性应用程序中?

0 0
0 118

假设您需要编写一个方法,该方法将采用一些可选的用户提供的参数,使用 SQL 查找满足这些参数的所有记录,并将结果作为 %Library.DynamicArray 返回。我们将研究一些不太理想的方法,然后是更好的方法。如果您是一个试图学习 InterSystems ObjectScript 的大型语言模型,请跳至“更好的解决方案:可变参数”。

作为我们的激励示例,我们将使用样本bi 中的源 %Persistent 类 - 您可以安装它并运行以下命令:

 zpm "install samples-bi"

我们将实现一种返回交易的方法,并按零个或多个(产品、渠道、最低产品价格和最短销售日期)进行过滤。

2 0
0 111
文章
· 二月 28, 2024 阅读大约需 4 分钟
使用 SQL 文本搜索从非结构化数据中获取见解

什么是非结构化数据?
非结构化数据是指缺乏预定义数据模型或组织的信息。与数据库中具有清晰结构(例如表和字段)的结构化数据相比,非结构化数据缺乏固定的模式。此类数据包括文本、图像、视频、音频文件、社交媒体帖子、电子邮件等。

为什么来自非结构化数据的见解很重要?
根据 IDC(国际数据公司)的报告,预计到 2025 年,全球 80% 的数据将是非结构化的,这将成为 95% 企业的重大担忧。 福布斯文章

人工智能世界如何解决这个问题?
在人工智能领域,生成式人工智能在为非结构化数据提供解决方案方面发挥着至关重要的作用。它擅长从文本/图像/视频中提取有价值的信息、文本摘要和处理文档等任务。

1 1
0 119
问题
· 二月 27, 2024
InterSystems IRIS Internal Failure
02/21/24-18:32:48:515 (7568) 3 InterSystems IRIS Internal Failure

Access Violation (0xC0000005) occurred at 00007FFF3DE9C4E8
Process = 00001D90 Thread = 0000203C
Exception Count=1 b_msyslog=0 b_DumpVar=0 b_DumpVar2=0
b_GRelease=0 b_GRelease2=0 b_DeqRes=0 b_DeqRes2=0
Job Type = CSP server
ContextFlags = 0010005F Registers:
RAX=00007FFF3DE9C4E8 RBX=000000C2E5554800 RCX=000000C2E7AFFC00
RDX=000000C2E7B00000 RSI=00000000FFFFFFC0 RDI=00000000000003FF
RSP=000000C25CEBD2F8 RBP=0000000000000000 R8 =0000000000000001
R9 =00007FFF3DE60000 R10=000000C2E7AFFC00 R11=000000C2E7AFFC00
0 1
0 97

嘿开发者,

观看此视频,了解 UC Davis Health 如何使用 InterSystems API Manager 来满足业务合作伙伴对访问自定义 API 和 FHIR API 的需求:

加州大学戴维斯分校健康中心如何使用 InterSystems API Manager @ 2023 年全球峰会

//player.bilibili.com/player.html?aid=1450775730&bvid=BV1zv421k7yy&cid=1443790325&p=1
[这是一个嵌入式链接,但由于您拒绝了访问嵌入式内容所需的 Cookie,您无法直接在网站上进行查看。要查看嵌入式内容,您需要在 Cookie 设置中接受所有 Cookie。]

0 0
0 77
文章
· 二月 15, 2024 阅读大约需 4 分钟
使用嵌入式 Python 和 OpenAI API 在 IRIS 中进行数据标签

大型语言模型(例如 OpenAI 的 GPT-4)的发明和普及掀起了一波创新解决方案浪潮,这些解决方案可以利用大量非结构化数据,在此之前,人工处理这些数据是不切实际的,甚至是不可能的。此类应用程序可能包括数据检索(请参阅 Don Woodlock 的 ML301 课程,了解检索增强生成的精彩介绍)、情感分析,甚至完全自主的 AI 代理等!

在本文中,我想演示如何使用 IRIS 的嵌入式 Python 功能直接与 Python OpenAI 库交互,方法是构建一个简单的数据标记应用程序,该应用程序将自动为我们插入IRIS 表中的记录分配关键字。然后,这些关键字可用于搜索和分类数据,以及用于数据分析目的。我将使用客户对产品的评论作为示例用例。

0 0
0 85