实时人工智能/机器学习计算的挑战

我们将从我们在 InterSystems 数据科学实践中遇到的示例开始讲起:

  • “高负载”客户门户与在线推荐系统相集成。 计划是在整个零售网络层面重新配置促销活动(我们将假设使用“细分策略”矩阵而非“平面”促销活动母版)。 推荐机制会有哪些变化? 推荐机制内的数据馈送和数据更新会有哪些变化(输入数据量增加了 25000 倍)? 推荐规则生成设置会有哪些变化(生成规则的总量和“分类”呈千倍增加,因此需要将推荐规则筛选阈值缩小千倍)?
  • 设备健康监控系统使用“手动”方式馈送数据样本。 现在,它将连接到每秒可传输数千个过程参数读数的 SCADA 系统。 监控系统会有哪些变化(它能否应对以秒为单位的设备健康监控)? 当输入数据接收到包含数百列最近在 SCADA 系统中实现的数据传感器读数的新块时,会发生什么(是否有必要关闭监控系统以将新的传感器数据整合到分析当中,以及要关闭多久)?
  • 复杂的人工智能/机器学习机制(推荐、监控、预测)依赖于彼此的结果。 要调整这些人工智能/机器学习机制的功能以适应输入数据的变化,每月需要多少人工工时? 人工智能/机器学习机制在支持制定业务决策方面的总体“延迟”是多少(支持信息的刷新频率对比新输入数据的馈送频率)?
0 0
0 43

现代医疗有无数来自数字技术的机会,包括优化流程的指挥中心、支持洞察力和决策的人工智能和机器学习、提供实时数据的物联网和连接设备,以及管理和保护大型数据流的强大数字基础设施。创建数字孪生和使用虚拟技术来推动医疗行业的真实世界价值将这一切结合起来。

数字孪生在医疗领域的真实世界价值

数字孪生是一个物理对象或过程的虚拟副本,通过模拟和反馈物理对应物来学习和发展。它在动态系统建模的同时部署了人工智能和机器学习,并适用于医疗保健和生命科学环境。数字孪生创造了一个机会,在实施干预措施、路径变化和操作改进之前,对系统的影响进行建模和预测,以实现效益最大化和风险最小化。

这种模拟创造了以下机会:测试情景以预测影响和帮助决策(例如,在系统设计和病人治疗中);识别低效、瓶颈和机会,并模拟效益/副作用(例如,在流程优化中);自动化反应和决策(例如,在环境控制中);以及越来越多地在虚拟环境中进行测试(例如,硅研究 - 美国和欧洲监管机构都在探索在新医疗药物和技术的审批中使用此类 "数字证据")。

这种数字孪生可以在不同层次上运作:作为整个系统或组织、生物体或建筑的复制品。

数字孪生的实际应用

0 0
0 101