文章
Michael Lei · 八月 9 阅读大约需 23 分钟
社区文章汇总--跟着社区学习InterSystems 技术

在这篇文章中,你可以访问InterSystems开发者社区中与学习InterSystems IRIS最相关主题的文章库。找到按机器学习、嵌入式Python、JSON、API和REST应用、管理和配置InterSystems环境、Docker和云、VSCode、SQL、分析/BI、全局、安全、DevOps、互操作性、Native API排列的顶级发表的文章。快来享受学习的乐趣吧!

机器学习

机器学习是建立先进的数据分析和自动化人工活动的一种必要的技术,具有很好的效率。它可以创建认知模型,从现有的数据中学习,并根据其自我调整的算法进行预测、概率计算、分类、识别和 "非创造性 "的人类活动的自动化。

在所有情况下,InterSystems IRIS作为一个数据平台和环境来创建、执行、提供和使用这些机器学习模型。IRIS能够从SQL命令(IntegratedML)中使用ML,使用嵌入式Python和PMML(预测模型标记语言)来执行ML。你可以在以下文章中查看它的功能:

0 1
0 51

大家好! 对于那些参加了2021年虚拟峰会的体验实验室的人来说,你可能还记得其中一个实验室会议是围绕Kubernetes进行的。我们现在已经将该实验室转换为完全线上按需使用。你可以启动一个小型的虚拟机集群,并按照练习来管理你的Kubernetes集群,将InterSystems IRIS容器部署到其中,并观察它在摧毁一个吊舱时的自我修复性质。

如果你有兴趣,这是一个很好的Kubernetes介绍。请看这里: 用InterSystems IRIS 和 Kubernetes实现高可用

0 0
0 63

实时人工智能/机器学习计算的挑战

我们将从我们在 InterSystems 数据科学实践中遇到的示例开始讲起:

  • “高负载”客户门户与在线推荐系统相集成。 计划是在整个零售网络层面重新配置促销活动(我们将假设使用“细分策略”矩阵而非“平面”促销活动母版)。 推荐机制会有哪些变化? 推荐机制内的数据馈送和数据更新会有哪些变化(输入数据量增加了 25000 倍)? 推荐规则生成设置会有哪些变化(生成规则的总量和“分类”呈千倍增加,因此需要将推荐规则筛选阈值缩小千倍)?
  • 设备健康监控系统使用“手动”方式馈送数据样本。 现在,它将连接到每秒可传输数千个过程参数读数的 SCADA 系统。 监控系统会有哪些变化(它能否应对以秒为单位的设备健康监控)? 当输入数据接收到包含数百列最近在 SCADA 系统中实现的数据传感器读数的新块时,会发生什么(是否有必要关闭监控系统以将新的传感器数据整合到分析当中,以及要关闭多久)?
  • 复杂的人工智能/机器学习机制(推荐、监控、预测)依赖于彼此的结果。 要调整这些人工智能/机器学习机制的功能以适应输入数据的变化,每月需要多少人工工时? 人工智能/机器学习机制在支持制定业务决策方面的总体“延迟”是多少(支持信息的刷新频率对比新输入数据的馈送频率)?
0 0
0 43
文章
Michael Lei · 四月 14, 2021 阅读大约需 8 分钟
通过 InterSystems IRIS 实现分布式人工智能

什么是分布式人工智能 (DAI)?

试图找到一个“无懈可击”的定义是徒劳的:这个术语似乎有些“超前”。 但是,我们仍然可以从语义上分析该术语本身,推导出分布式人工智能也是人工智能(请参见我们为提出一个“实用”定义所做的努力),只是它分布在多台没有聚合在一起(既不在数据方面,也不通过应用程序聚合,原则上不提供对特定计算机的访问)的计算机上。 即,在理想情况下,分布式人工智能的安排方式是:参与该“分布”的任何计算机都不能直接访问其他计算机的数据和应用程序,唯一的替代方案是通过“透明的”消息传递来传输数据样本和可执行脚本。 与该理想情况的任何偏差都会导致出现“部分分布式人工智能”- 一个示例是通过中央应用程序服务器分发数据, 或者其反向操作。 不管怎样,我们都会得到一组“联合”模型(即,在各自数据源上训练的模型,或者按自己的算法训练的模型,或者同时以这两种方式训练的模型)。

0 0
0 99

去年,AWS推出了基于ARM架构的AWS Graviton处理器第一代Amazon EC2 A1实例。在2019年AWS re:Invent 大会上,亚马逊宣布了第二代AWS Graviton2处理器和相关的Amazon EC2 M6g实例。相比前一代基于Intel Xeon的M5实例,Amazon EC2 M6g实例的性价比提升幅度高达40%。

0 1
0 161

本文提供了一个参考架构,作为示例说明基于 InterSystems Technologies(适用于 CachéEnsembleHealthShareTrakCare 以及相关的嵌入式技术,例如 DeepSeeiKnowZen Zen Mojo)提供的强大性能和高可用性应用。
Azure 有两种用于创建和管理资源的不同部署模型:Azure Classic Azure Resource Manager 本文中的详细信息基于 Azure Resource Manager (ARM) 模型。

0 0
0 146
文章
Li Yan · 一月 11, 2021 阅读大约需 27 分钟
面向 Amazon Web Services (AWS) 的 InterSystems IRIS 示例参考架构

Amazon Web Services (AWS) 云提供广泛的云基础设施服务,例如计算资源、存储选项和网络,这些都非常实用:按需提供,几秒内就可用,采用即付即用定价的模式。 新服务可得到快速配置,且前期无需支出大量资金。 这使得大企业、初创公司、中小型企业以及公共部门的客户可以访问他们所需的基础设施,从而快速响应不断变化的业务需求。

更新日期:2019 年 10 月 15 日

0 0
0 145

Google Cloud Platform (GCP) 为基础架构即服务 (IaaS) 提供功能丰富的环境,其作为云提供完备的功能,支持所有的 InterSystems 产品,包括最新的 InterSystems IRIS 数据平台。 与任何平台或部署模型一样,必须留心以确保考虑到环境的各个方面,例如性能、可用性、操作和管理程序。 本文将详细阐述所有这些方面。

0 0
0 207

假设你想了解 InterSystems 在数据分析方面能提供什么。 你研究了理论,现在想要进行一些实践。 幸运的是,InterSystems 提供了一个项目:Samples BI,其中包含了一些很好的示例。 从 README 文件开始,跳过任何与 Docker 相关的内容,直接进行分步安装。 启动虚拟实例 安装 IRIS,按照说明安装 Samples BI,然后用漂亮的图表和表格让老板眼前一亮。 到目前为止还不错。

但是不可避免地,你需要进行更改。

0 0
0 204