Hi 大家好

在本文中,我讲介绍我的应用 iris-AgenticAI .

代理式人工智能的兴起标志着人工智能与世界互动方式的变革性飞跃--从静态响应转变为动态、目标驱动的问题解决方式。参看 OpenAI’s Agentic SDK , OpenAI Agents SDK使您能够在一个轻量级、易用且抽象程度极低的软件包中构建代理人工智能应用程序。它是我们之前的代理实验 Swarm 的生产就绪升级版。

该应用展示了下一代自主人工智能系统,这些系统能够进行推理、协作,并以类似人类的适应能力执行复杂任务。

应用功能

  • Agent Loop 🔄 一个内置循环,可自主管理工具的执行,将结果发回 LLM,并迭代直至任务完成。
  • Python-First 🐍 利用本地 Python 语法(装饰器、生成器等)来协调和连锁代理,而无需外部 DSL。
  • Handoffs 🤝 通过在专业代理之间委派任务,无缝协调多代理工作流程。
  • Function Tools ⚒️ 用 @tool 修饰任何 Python 函数,可立即将其集成到代理的工具包中。
  • Vector Search (RAG) 🧠 原生集成向量存储(IRIS),用于 RAG 检索。
  • Tracing 🔍 内置跟踪功能,可实时可视化、调试和监控代理工作流(想想 LangSmith 的替代方案)。
  • MCP Servers 🌐 通过 stdio 和 HTTP 支持模型上下文协议(MCP),实现跨进程代理通信。
  • Chainlit UI 🖥️ 集成 Chainlit 框架,可使用最少的代码构建交互式聊天界面。
  • Stateful Memory 🧠 跨会话保存聊天历史、上下文和代理状态,以实现连续性和长期任务。

0 0
0 110
文章
· 十月 24 阅读大约需 14 分钟
构建 AI 智能体:从小白到大神

学习如何使用 LangGraph 设计结合了推理、矢量搜索和工具集成的可扩缩自主 AI 智能体。

cover

概括

  • AI 智能体是一种超越简单的聊天机器人的自主系统,它结合了记忆库、上下文,并具有自动完成任务的主动性。
  • LangGraph 是一种框架,它使我们能够利用具有内置状态管理的节点(任务)和边缘(连接),构建复杂的 AI 工作流。
  • 本指南将指导您构建 AI 赋能的客户支持智能体,该智能体可以划分优先级,识别相关主题,并确定是上报还是自动回复。

那么,AI 智能体究竟是什么?

让我们直面它吧 —“AI 智能体”听起来就像可以接管会议室的机器人。 实际上,它们是您得力的助手,可以简化复杂的工作流,消除重复性任务。 您可以把它们看作是聊天机器人的下一个进化阶段:它们不只是简单地等待提示;它们可以发起行动,协调多个步骤,并随时进行调整。

0 0
0 6