文章
· 22 hr 前 阅读大约需 6 分钟
FHIR 环境设置指南

我很清楚对于那些完全不熟悉 VS Code、Git、Docker、FHIR 和其他工具的人来说,设置环境时会遇到一些困难。 所以我决定写这篇文章,详细介绍整个设置过程,以便大家能够轻松上手。

如果您能在本文最后留下评论,告诉我说明是否清楚,是否有遗漏,或者是否有其他您觉得有用的东西,我将不胜感激。

设置包括:

✅ VS Code – 代码编辑器
✅ Git – 版本控制系统
✅ Docker – 运行 IRIS for Health Community 的实例
✅ VS Code REST 客户端扩展程序 – 用于运行 FHIR API 查询
✅ Python – 用于编写基于 FHIR 的脚本
✅ Jupyter Notebook – 用于 AI 和 FHIR 任务

准备工作:确保您在系统上拥有管理员权限

除了阅读本指南,您还可以按照视频中的步骤操作:

如果您是 Windows 系统(请注意:原文是YouTube视频,请跳转至EN原帖查看)

https://www.youtube.com/embed/IyvuHbxCwCY
[这是一个嵌入式链接,但由于您拒绝了访问嵌入式内容所需的 Cookie,您无法直接在网站上进行查看。要查看嵌入式内容,您需要在 Cookie 设置中接受所有 Cookie。]

0 0
0 6
文章
· 22 hr 前 阅读大约需 7 分钟
Interoperability on Python (IoP) 简介

Interoperability on Python (IoP) 是一个概念验证项目,旨在展示与 Python 优先方式相结合时 InterSystems IRIS Interoperability Framework 的强大功能。IoP 利用Embedded Python(嵌入式 Python,InterSystems IRIS 的一个功能)使开发者能够用 Python 编写互操作性组件,从而可以与强大的 IRIS 平台无缝集成。本指南专为初学者编写,全面介绍了 IoP、其设置以及创建第一个互操作性组件的操作步骤。 阅读完本文,您将能够清楚地了解如何使用 IoP 构建可扩缩、基于 Python 的互操作性解决方案。

0 0
0 7
文章
· 十月 24 阅读大约需 14 分钟
构建 AI 智能体:从小白到大神

学习如何使用 LangGraph 设计结合了推理、矢量搜索和工具集成的可扩缩自主 AI 智能体。

cover

概括

  • AI 智能体是一种超越简单的聊天机器人的自主系统,它结合了记忆库、上下文,并具有自动完成任务的主动性。
  • LangGraph 是一种框架,它使我们能够利用具有内置状态管理的节点(任务)和边缘(连接),构建复杂的 AI 工作流。
  • 本指南将指导您构建 AI 赋能的客户支持智能体,该智能体可以划分优先级,识别相关主题,并确定是上报还是自动回复。

那么,AI 智能体究竟是什么?

让我们直面它吧 —“AI 智能体”听起来就像可以接管会议室的机器人。 实际上,它们是您得力的助手,可以简化复杂的工作流,消除重复性任务。 您可以把它们看作是聊天机器人的下一个进化阶段:它们不只是简单地等待提示;它们可以发起行动,协调多个步骤,并随时进行调整。

0 0
0 7