文章
· 六月 14, 2023 阅读大约需 3 分钟
使用LangChain 修复 SQL

本文是 SqlDatabaseChain 的简单快速入门(我所做的)。

希望大家会感兴趣。

非常感谢:

sqlalchemy-iris 作者@Dmitry Maslennikov

您的项目使我的试验变得可能。

文章脚本使用 openai API,因此请注意不要在外部共享您不打算共享的表信息和记录。

如果需要,可以插入本地模型。

2 0
1 284
文章
· 九月 3, 2023 阅读大约需 7 分钟
在 Python 上使用IRIS REST API 进行 SQL 迁移

对于即将到来的Python 竞赛,我想制作一个小型演示,介绍如何使用 Python 创建一个简单的 REST 应用程序,该应用程序将使用 IRIS 作为数据库。使用这个工具

  • FastAPI框架,高性能,易学,快速编码,可用于生产
  • SQLAlchemy 是 Python SQL 工具包和对象关系映射器,为应用程序开发人员提供 SQL 的全部功能和灵活性
  • Alembic 是一个轻量级数据库迁移工具,可与 SQLAlchemy Database Toolkit for Python 一起使用。
  • Uvicorn 是 Python 的 ASGI Web 服务器实现。

1 0
0 130
文章
· 三月 21, 2024 阅读大约需 2 分钟
IRIS 向量搜索

这是在 IRIS 中完全运行向量搜索演示的尝试。
没有外部工具,您需要的只是终端/控制台和管理门户。
特别感谢Alvin Ryanputra作为他的软件包iris-vector-search的基础
灵感和测试数据的来源。
我的软件包基于 IRIS 2024.1 版本,需要注意您的处理器功能。

我尝试用纯 ObjectScript 编写演示。
仅描述向量的计算是在嵌入式Python中完成的

计算 2247 个记录的 384 维向量需要时间。
在我的 Docker 容器中,它正在运行 01:53:14 来完全生成它们。

1 1
0 80
文章
· 六月 11, 2024 阅读大约需 8 分钟
使用 IRIS 以及 langchain 构建 问答聊天机器人

这篇文章介绍了使用由支持 langchain 框架的IRIS来实现问答聊天机器人,其重点介绍了检索增强生成(RAG)。

文章探讨了IRIS中的向量搜索如何在langchain-iris中完成数据的存储、检索和语义搜索,从而实现对用户查询的精确、快速的响应。通过无缝集成以及索引和检索/生成等流程,由IRIS驱动的RAG应用程序使InterSystems开发者能够利用GenAI系统的能力。

为了帮助读者巩固这些概念,文章提供了Jupyter notebook一个完整的问答聊天机器人应用程序,以供参考。

什么是RAG以及它在问答聊天机器人中的角色

1 0
0 264

介绍

在最近几篇文章中的一些文章中,我谈到了 IRIS 和 Python 之间的类型,很明显,从一侧到另一侧访问对象并不是那么容易。

幸运的是,已经完成了创建SQLAlchemy-iris 的工作(点击链接在 Open Exchange 上查看它),这使得 Python 访问 IRIS 对象的一切变得更加容易,我将展示它的启动器。

谢谢@Dmitry.Maslennikov

安装中

要安装,只需打开具有管理员权限的终端并输入

pip install sqlalchemy-iris

如果需要,这还将为您安装先决条件。

1 0
0 305
文章
· 六月 13, 2022 阅读大约需 2 分钟
Python和ObjectsScript中消息响应时间的对比测试

这是一个在InterSystems IRIS中用python和objectscript建立的对比测试。

测试目的是比较在python和objectscript中从BP到BO来回发送一千条请求/消息的速度。

更多信息,请访问 https://github.com/LucasEnard/benchmark-python-objectscript

重要提示 : 这里用的是python, graph objectscipt和objectscript从一个BP到一个BO来回发送1000条消息的时间,单位是秒。

字符串信息是由十个字符串变量组成。

对象信息由十个对象变量组成,每个对象都是它自己的int、float、str和List(str)。

1 0
0 107
文章
· 七月 12, 2023 阅读大约需 4 分钟
当 GPT 与 FHIR 碰撞出火花:利用Open API 的规范力量

FHIR 通过提供标准化数据模型来构建医疗保健应用程序并促进不同医疗保健系统之间的数据交换,彻底改变了医疗保健行业。由于 FHIR 标准基于现代 API 驱动的方法,因此移动和 Web 开发人员更容易使用它。然而,与 FHIR API 交互仍然具有挑战性,尤其是在使用自然语言查询数据时。

1 0
0 323
文章
· 五月 8, 2021 阅读大约需 8 分钟
将 Python JDBC 连接到 IRIS 数据库 - 快速笔记

关键字:Python,JDBC,SQL,IRIS,Jupyter Notebook,Pandas,Numpy ,机器学习

1. 目的

这是一个用于演示的 5 分钟快速笔记,通过 Jupyter Notebook 中的 Python 3 调用 IRIS JDBC 驱动程序,以经由 SQL 语法从 IRIS 数据库实例读取数据和向 IRIS 数据库实例写入数据。

去年,我发表了关于将 Python 绑定到 Cache 数据库的简要笔记(第 4.7 节)。 如何使用 Python 挂入 IRIS 数据库以将其数据读入 Pandas 数据框和 NumPy 数组进行常规分析,然后再将一些经过预处理或标准化的数据写回 IRIS 中,准备进一步用于 ML/DL 管道,现在可能是时候回顾一些选项和讨论了。

一些立即浮现的快速选项

0 0
0 421
文章
· 八月 4, 2023 阅读大约需 3 分钟
在 InterSystems IRIS 中创建具有超过 999 个属性的类/表

InterSystems IRIS 目前将类限制为 999 个属性。

但是,如果您需要为每个对象存储更多数据该怎么办?

本文将回答这个问题(附加了社区 Python 网关的客串以及如何将广泛的数据集传输到 Python 中)。

答案其实很简单 - InterSystems IRIS 目前将类限制为 999 个属性,但不限制 999 个基元(primitives)。 InterSystems IRIS 中的属性可以是具有 999 个属性的对象等等 - 该限制很容易被忽略。

0 0
0 143
文章
· 七月 6, 2021 阅读大约需 2 分钟
使用 Yape 解包 pButtons - 更新说明和快速指南

如果一张图片胜过千言万语,那么一段视频又价值几何? 当然胜过敲一个帖子。

请在 InterSystems Developers YouTube 观看我的“Coding talks”:

1. 使用 Yape 分析 InterSystems IRIS 系统性能。 第 1 部分:安装 Yape

在容器中运行 Yape。

2. Yape 容器 SQLite iostat InterSystems

提取和绘制 pButtons 数据,包括时间范围和 iostat。

0 0
0 153

在这篇文章中,我试图找出多个领域来开发我们能够使用python和机器学习的功能。

每家医院都在努力利用技术和服务来提高其服务质量和效率。

医疗保健部门是一个非常大的、可供选择的服务领域,而python是做机器学习的最好技术之一。

在每个医院里,人们都会有一些感觉,如果这种感觉能够被计算机理解,使用技术就有机会提供更好的服务。

在这里,我们可以把这两者结合起来,在医疗部门,我正试图理解/识别各种选择,以提供更好的服务。

首先,我们可以尝试使用python的机器学习来识别人并了解他们目前的感受。比如,在医院信息系统中,每个病人至少有一张照片,使用该照片我们可以识别病人,然后一旦病人到达医院,使用视频监控和机器学习技术需要识别这个人的感觉。

在医院设施中会看到多种类型的感觉。

1)紧张

2)平静和冷静

3) 哭泣

4) 暴力的病人/亲属

5) 生病的病人

6) 高烧鉴定

像上面的情况,我们可以看到多种不同的类型。

如果一个已经登记的病人发高烧,那么使用闭路电视识别这个病人的情况,并捕捉温度热像仪,护理人员可以给予更好的支持,这在接待服务领域是非常大的区别。

0 0
0 150
文章
· 十二月 12, 2021 阅读大约需 3 分钟
Ensemble 和 Caché 应该迁移至 InterSystems IRIS 的五个原因

您可能已经听说,我们目前正在为所有正在使用 Caché 和 Ensemble 的客户提供限时免费迁移到我们的下一代数据平台 InterSystems IRIS 的机会。

虽然我们依旧如往常一样全力支持那些正在使用 Caché 数据库和 Ensemble 集成引擎的客户,但我们还是认为 InterSystems IRIS 是未来的关键。它结合了 Caché 和 Ensemble 的所有功能,并添加了大量令人兴奋的强大功能,从机器学习到原生 Python。

这也正是我们为现有客户提供迁移到 InterSystems IRIS 并使用这些新功能的原因。 我们也通过就地迁移支持轻松迁移,这意味着无需数据库转换、分步迁移指南、教程等。

听起来挺有趣对吗? 以下是我针对当前 Caché 和 Ensemble 应迁移到 InterSystems IRIS 的五个主要原因。

0 0
0 311
文章
· 八月 30, 2023 阅读大约需 5 分钟
使用 SQLAlchemy 将表传输到 IRIS 或从 IRIS 获取表

案例描述

假设您是一名 Python 开发人员或拥有一支训练有素的 Python 专业团队,但您分析 IRIS 中某些数据的期限很紧迫。当然,InterSystems 提供了许多用于各种分析和处理的工具。然而,在给定的场景中,最好使用旧的 Pandas 来完成工作,然后将 IRIS 留到下次使用。
对于上述情况和许多其他情况,您可能需要从 IRIS 获取表来管理 InterSystems 产品之外的数据。但是,当您有任何格式(即 CSV、TXT 或 Pickle)的外部表时,您可能还需要以相反的方式执行操作,您需要在其上导入并使用 IRIS 工具。
无论您是否必须处理上述问题,Innovatium让我明白,了解更多解决编码问题的方法总是能派上用场。好消息是,从 IRIS 引入表时,您不需要经历创建新表、传输所有行以及调整每种类型的繁琐过程。
本文将向您展示如何通过几行代码快速将 IRIS 表转换为 Pandas 数据框架并向后转换。您可以在我的GitHub上查看代码,您可以在其中找到包含本教程每个步骤的 Jupiter Notebook。

0 0
0 145

Iris-python-template

包含各种Python代码的项目模版,可用于InterSystems IRIS 社区容器版Community Edition with container。

特性 :

  • Notebooks 记事本
    • Embedded Python 内核
    • ObjectScript 内核
    • Vanilla Python 内核
  • Embedded嵌入式 Python
    • Code example代码样例
    • Flask demo
  • IRIS Python Native 原生APIs
    • Code example

Diagram

0 0
0 328
文章
· 九月 17, 2023 阅读大约需 2 分钟
小程序--密码增强管理:无缝编辑密码

增强的密码管理:无缝编辑密码

在不断发展的数字安全领域,强大的密码管理工具已变得不可或缺。我们的密码管理应用程序旨在简化和保护您的在线生活,现在提供了一项增强功能 - 轻松编辑密码的能力。

为什么这个功能会改变游戏规则?

0 0
0 123
文章
· 九月 18, 2023 阅读大约需 6 分钟
开发者作品展示--几乎实现的向量支持

如今,关于大语言模型、人工智能等的消息不绝于耳。向量数据库是其中的一部分,并且已经有非IRIS的技术实现了向量数据库。

为什么是向量?

  • 相似性搜索:向量可以进行高效的相似性搜索,例如在数据集中查找最相似的项目或文档。传统的关系数据库是为精确匹配搜索而设计的,不适合图像或文本相似性搜索等任务。
  • 灵活性:向量表示形式用途广泛,可以从各种数据类型派生,例如文本(通过 Word2Vec、BERT 等嵌入)、图像(通过深度学习模型)等。
  • 跨模态搜索:向量可以跨不同数据模态进行搜索。例如,给定图像的向量表示,人们可以在多模式数据库中搜索相似的图像或相关文本。

还有许多其他原因。

因此,对于这次 pyhon 竞赛,我决定尝试实现这种支持。不幸的是我没能及时完成它,下面我将解释原因。

0 0
0 130
文章
· 二月 15, 2024 阅读大约需 4 分钟
使用嵌入式 Python 和 OpenAI API 在 IRIS 中进行数据标签

大型语言模型(例如 OpenAI 的 GPT-4)的发明和普及掀起了一波创新解决方案浪潮,这些解决方案可以利用大量非结构化数据,在此之前,人工处理这些数据是不切实际的,甚至是不可能的。此类应用程序可能包括数据检索(请参阅 Don Woodlock 的 ML301 课程,了解检索增强生成的精彩介绍)、情感分析,甚至完全自主的 AI 代理等!

在本文中,我想演示如何使用 IRIS 的嵌入式 Python 功能直接与 Python OpenAI 库交互,方法是构建一个简单的数据标记应用程序,该应用程序将自动为我们插入IRIS 表中的记录分配关键字。然后,这些关键字可用于搜索和分类数据,以及用于数据分析目的。我将使用客户对产品的评论作为示例用例。

0 0
0 108
文章
· 二月 18, 2024 阅读大约需 11 分钟
向量搜索和 RAG(检索增强生成)模型

1. IRIS RAG Demo

IRIS RAG Demo

这是 IRIS 与 RAG(检索增强生成)示例的一个简单演示。
后端是使用 IRIS 和 IoP用 Python 编写的,LLM 模型是 orca-mini 并由 ollama 服务器提供。
前端是用 Streamlit 编写的聊天机器人。

0 1
0 527