文章
· 七月 1, 2024 阅读大约需 4 分钟
在InterSystems ObjectScript中使用 VECTORs

迄今为止,我看到的大多数使用向量vector的示例,将它只作为 SQL 中的一种功能,尤其是围绕 VECTOR_Search 的 3 个函数。
* TO_VECTOR()
* vector_dot_product ()
* vector_cosine ()

iris-vector-search 演示包中隐藏着一个非常有用的摘要。
从那里,你可以通过多个链接找到所需的一切。

我还缺少更多的 VECTOR 方法,于是在 Idea Portal 上提出了相关请求。

接着,我想起每个 SQL 方法或存储过程都有一堆 ObjectScript 代码。
于是我开始搜索,下面就是我的研究的一些总结:

0 0
0 30

通过 REST API 将前端 React 应用程序与 IRIS 数据库等后端服务集成,是构建健壮网络应用程序的强大方法。但是,开发人员经常遇到的一个障碍是跨源资源共享(CORS)问题,由于网络浏览器强制执行的安全限制,该问题可能会阻止前端访问后端的资源。在本文中,我们将探讨在将 React Web 应用程序与 IRIS 后端服务集成时如何解决 CORS 问题。

创建Schema

我们首先定义一个名为 Patients 的简单Schema:

1 0
0 111

低代码挑战

想象一下那个场景。您正在 Widgets Direct 愉快地工作,这是互联网上首屈一指的小部件和小部件配件零售商。您的老板有一些毁灭性的消息,一些客户可能对他们的小部件不太满意,我们需要一个帮助台应用程序来跟踪这些投诉。为了让事情变得有趣,他希望代码占用非常小,并挑战您使用 InterSystems IRIS 以少于 150 行代码交付应用程序。这可能吗?

免责声明:本文记录了一个非常基本的应用程序的构建,为了简洁起见,省略了安全性和错误处理等细节。该应用程序仅供参考,不得用于任何生产应用。本文使用IRIS 2023.1作为数据平台,并非所描述的所有功能在早期版本中都可用

第 1 步 - 定义数据模型

我们首先定义一个新的干净的命名空间 - 带有代码和数据数据库。虽然所有内容都可以位于 1 个数据库中,但将它们拆分以便于数据刷新。

0 0
0 65
文章
· 六月 11, 2024 阅读大约需 8 分钟
使用 IRIS 以及 langchain 构建 问答聊天机器人

这篇文章介绍了使用由支持 langchain 框架的IRIS来实现问答聊天机器人,其重点介绍了检索增强生成(RAG)。

文章探讨了IRIS中的向量搜索如何在langchain-iris中完成数据的存储、检索和语义搜索,从而实现对用户查询的精确、快速的响应。通过无缝集成以及索引和检索/生成等流程,由IRIS驱动的RAG应用程序使InterSystems开发者能够利用GenAI系统的能力。

为了帮助读者巩固这些概念,文章提供了Jupyter notebook一个完整的问答聊天机器人应用程序,以供参考。

什么是RAG以及它在问答聊天机器人中的角色

1 0
0 164
文章
· 六月 10, 2024 阅读大约需 2 分钟
类定义中如何使用列式存储

列式存储是 InterSystems IRIS 提供的一项较新的技术。与传统的基于行的存储不同,它通过将数据存储在列而不是行中来优化查询处理,从而实现更快的访问和检索相关信息。

下面是使用SQL创建此类表的例子

1 0
0 92

从发布InterSystems IRIS®数据平台2022.3开始,InterSystems修改了许可证强制执行机制,以包括REST和SOAP请求。由于这种变化,在升级后,使用REST或SOAP的非处理器核数的许可证环境下,用户可能会遇到更高的许可证消耗。要确定此警报是否适用于您的InterSystems许可证,请按照下面链接的FAQ中的说明进行操作。

0 1
0 83

VIP:192.168.30.111,故障转移节点一(192.168.30.10),故障转移节点二(192.168.30.11),ECP地址192.168.30.100

在配置时ECP里增加数据服务器IP为【主】故障转移节点一(192.168.30.10)【文档说不能使用VIP地址】后,

如果主从切换。ECP里的数据服务器IP,会自动变换成故障转移节点二(192.168.30.11)【此时为主】吗?

如果不能,需要手动变更吗?还是不需要?

0 2
0 64
文章
· 五月 17, 2024 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - 真实案例分享

最近有某国内三甲医院为满足评级和飞行检查要求,希望提升HIS和IRIS的SQL查询效率,客户和实施工程师整理了一个慢查询的SQL列表, 有一些查询比较慢, 查询时间在甚至大于60分钟。

在我们和厂商共同努力下,对整个库的SQL查询做了优化。 下表是记录了我们在进行了大部分优化工作后的结果,您可以看到大多查询从几十分钟减少到了几十秒甚至1秒以内。其中有几个慢到几分钟的查询,最后经过细调, 也把查询耗时减少到了一分钟以内。 优化的效果还是很明显的。

这里我分享一下操作的要点,以便给其他有同样问题的客户一个思路。

其实如果您看过我前面的帖子,应该已经有了基本的概念。我就把工作流程总结一下,其实就这么几个步骤:

步骤一:

2 0
0 231
文章
· 五月 15, 2024 阅读大约需 4 分钟
IRIS/Caché SQL优化经验分享 - 优化关键字

SQL查询优化器一般情况下能给出最好的查询计划,但不是所有情况都这样,所以InterSystems SQL还提供了一个方式, 也就是在查询语句里加入optimize-option keyword(优化关键字), 用来人工的修改查询计划。

比如下面的查询:

SELECT AVG(SaleAmt) FROM %PARALLEL User.AllSales GROUP BY Region

其中的%PARALLEL, 就是最常用的优化关键字, 它强制SQL优化器使用多进程并行处理这个SQL。

您可以这样理解: 如果查询优化器足够聪明,那么绝大多数情况下,根本就不需要优化关键字来人工干预。因此,您也一定不奇怪在不同的IRIS/Caché版本中, 关键字的表现可能不一样。越新的版本,应该是越少用到。比如上面的%PARALLEL, 在Caché的大多数版本中, 在查询中加上它一般都能提高查询速度,而在IRIS中,尤其是2023版本以后, 同样的SQL查询语句,很大的可能查询优化器已经自动使用多进程并行查询了,不再需要用户人工干预了。

因此,先总结有关优化关键字的要点:

0 0
0 101

Hi 开发者们,

我们非常高兴地邀请大家参加新的 InterSystems 在线编程竞赛,此次编程大赛关注生成式AI(GenAI), 向量搜索(Vector Search )与机器学习(Machine Learning)!

🏆 InterSystems 编程大赛:Vector Search, GenAI 与 ML 🏆

时间:2024年4月22日 - 5月19日 (美国东部时间)

奖金池: $14,000

0 0
0 144
文章
· 四月 12, 2024 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - SQL性能的统计(SQL Statement)

SQL性能监控是DBA最重要的日常工作。经常被问起:"Caché/IRIS怎么发现慢SQL"? 答案很简单: 到管理门户的SQL页面,点开如下的“SQL语句“子页, 您能看到这个命名空间的所有执行过的SQL语句,知道每个SQL语句执行了多少次,平均执行时间是多少, 被那个客户端编译的,第一次执行是那一天等等。

请看下面的截图

图中的各个栏目基本都不需要解释,有个别的内容在这里总结一些:

  • 表/视图/存储过程名称:列出这个查询使用的所有的表/视图/存储过程的名字。如果你想看某个表有关的查询,可以使用上面的过滤器

  • 位置(Location) : 对于动态查询, 列出所使用的缓存的查询的类名,对于嵌入SQL(Embedded SQL)查询,列出使用的routine名字。

0 2
0 120
文章
· 四月 17, 2024 阅读大约需 1 分钟
[视频] 与 InterSystems 一起释放机器学习的力量

Hey Community,

Play the new video on InterSystems Developers Bilibili官方频道:

与 InterSystems 一起释放机器学习的力量

//player.bilibili.com/player.html?aid=1553341786&bvid=BV181421d73a&cid=1509585441&p=1
[这是一个嵌入式链接,但由于您拒绝了访问嵌入式内容所需的 Cookie,您无法直接在网站上进行查看。要查看嵌入式内容,您需要在 Cookie 设置中接受所有 Cookie。]

0 0
0 57
文章
· 四月 16, 2024 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - SQL索引分析器

索引分析器工具用来分析索引的使用情况,对DBA和开发者非常有用。 他们需要知道那些查询进行了全表扫描,那些查询缺失了索引, 而那些索引从来又从来没有被用过。多余的索引降低系统性能,浪费了磁盘空间。

索引使用情况

到“管理门户”的" 系统 > SQL 性能工具 > SQL 索引分析器", 点击“索引使用情况”, 您将看到这样的图

执行SQL语句查询会带来更多的灵活性。上面的查询可以写成下面这个SQL,

SELECT TableName, indexname, UsageCount
FROM %SYS_PTools.UtilSQLAnalysisDB order by usagecount desc

2016年以后的Caché版本就已经有了'索引使用情况'的查询。使用管理门户没有区别, 但SQL语句不同,使用的是比较老的类和表名,各位请参考文档。

0 0
0 117
文章
· 四月 15, 2024 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - SQL性能分析工具

SQL Performance Analysis Toolkit,或者叫SQL性能分析工具,并不是给维护人员使用的。

在RIS文档里是这么说的: 这个工具包里的工具收集SQL执行的详细信息,用来找出一个查询计划的特殊问题。 使用这些信息,开发人员改善这个查询的效率。 它可以非常大的增加服务器的开销。..., 它不应该被持续执行。

要做分析,首先您需要打开一个采集“SQL runtime Statistics"的开关来收集详细信息,这个开关默认的状态是OFF。 文档里说: The SQL Performance Analysis Toolkit offers support specialists the ability to profile specific SQL statements or groups of statements.

这里的"support specialists"指的是厂家的技术支持人员。

因此,总结如下:

0 0
0 66
文章
· 四月 10, 2024 阅读大约需 7 分钟
IRIS/Caché SQL优化经验分享 - 查询计划(Query Plan)

为什么要读Query Plan, 在线文档中有句话是这么说的:

While the SQL compiler tries to make the most efficient use of data as specified by the query, sometimes the author of the query knows more about some aspect of the stored data than is evident to the compiler. In this case, the author can make use of the query plan to modify the original query to provide more information or more guidance to the query compiler.

翻译一下是这样:系统给你的查询计划并不总是最好的,如果您能对查询计划,可以人工做更精细的优化。

0 0
0 93
文章
· 四月 9, 2024 阅读大约需 7 分钟
Open AI 与 IRIS 集成 - 文件管理

人工智能不仅限于通过带有说明的文本生成图像,或通过简单的指示创建叙事。
您还可以制作图片的变体,或为已有图片添加特殊背景。
此外,您还可以获得音频转录,无论其语言和说话者的语速如何。
让我们来分析一下文件管理是如何工作的。

0 0
0 80

2024年3月26日,InterSystems数据平台全球主管Scott Gnau发文,宣布InterSystems IRIS数据平台新增了向量搜索(vector search)功能。

本文作者为Scott Gnau,InterSystems数据平台全球主管。

1 0
0 131
文章
· 三月 22, 2024 阅读大约需 4 分钟
IRIS/Caché SQL优化经验分享 - Collation(排序规则)

这个帖子内容有点深。如果您读的有困难,请直接跳过这篇,对绝大多数IRIS/Caché使用者,它一点都不重要。

数据库表的Collation(排序规则)本来是一个非常简单的概念。说到它是因为曾经发现过由Collation引起的性能问题。

我试图用一句话来解释数据库的排序规则:

  • 绝大多数数据库因为业务查询需要,保存的字符型数据是不分大小写的。当你执行一个 order by, group by, distinct,like等等条件查询时,因为这个不分大小写的collation,你得到的结果也不分大小写。例如,对名字做group by, James, james一定是在一组。
  • 如果非要区分大小写,会在查询的时候使用一个函数
  • 因为要操作非英语的字符集,以及可以被当作字符看待的数字类型,适应不同的排序规则,一个数据库可能有很多种Collation类型。

很简单,在表一级定义Collation的SQL语句是:

1 0
0 108
文章
· 三月 21, 2024 阅读大约需 2 分钟
IRIS 向量搜索

这是在 IRIS 中完全运行向量搜索演示的尝试。
没有外部工具,您需要的只是终端/控制台和管理门户。
特别感谢Alvin Ryanputra作为他的软件包iris-vector-search的基础
灵感和测试数据的来源。
我的软件包基于 IRIS 2024.1 版本,需要注意您的处理器功能。

我尝试用纯 ObjectScript 编写演示。
仅描述向量的计算是在嵌入式Python中完成的

计算 2247 个记录的 384 维向量需要时间。
在我的 Docker 容器中,它正在运行 01:53:14 来完全生成它们。

1 1
0 67
文章
· 三月 21, 2024 阅读大约需 1 分钟
IRIS/Caché SQL优化经验分享 - Bitmap Extent

Bitmap索引是指对某个,或者某几个字段建立的bit map(位图映射)。如果是对整个表的记录,也就是表的%ID做位图映射,得到的特殊的bitmap索引在IRIS/Caché里被称为Bitmap Extent。

建立Bitmap Extent索引的目的就是加快COUNT(*)的执行。提高了多少呢? 下面两个显示的是最简单的全表查询花费的时间:

  • 不使用Bitmap Extent : 1.3810s
  • 使用Bitmap Extent: 0.0038

相差有几百倍。

0 0
0 74
文章
· 三月 20, 2024 阅读大约需 2 分钟
IRIS/Caché SQL优化经验分享 - 复合索引的使用

复合索引(combined index)也被称为组合索引或者联合索引,顾名思义,就是一个索引建立在多个字段上。当用这些字段为条件查询时,相比对每个字段单独做索引,复合索引能给出很好的性能,还能减少索引的数量。

为什么能减少索引的数量? 通常来说,也就是在其他数据库,联合索引符合”最左匹配“的原则。在BING上搜索“复合索引,得到的第一个搜索结果的这篇文章就说的就很简单明了:

下面这个SQL语句在 列X,列Y,列Z 上建立了一个复合索引。

mysql
CREATE INDEX 索引名 ON 表名(列名X, 列名Y, 列名Z);

其实这相当于建立了三个索引,分别是:

0 0
0 99
文章
· 三月 19, 2024 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - 检查索引的完整性

Caché/IRIS的特点是运行Global的修改,而这个修改和SQL是无关的,因此非常容易出现数据库表数据完整性的问题,也就是表中的数据是不是符合定义的表约束。

这样的情况非常常见。有些是人为的对Global的错误修改, 有些是应用系统的事务性管理写的不对,造成事务回滚的时候破坏了索引的完整性。无论什么原因,只要使用Global操作,破坏SQL的完整性非常难以避免。结果就是SQL查询给出错误结果。

最简单的解决方法就是执行“索引检查(Validate Indices)"

我们来做个实验

- 先修改一个global: 如下图, 将Patient表的一个记录的SEX字段,从'M'改到‘F'.

运行索引检查, 结果会提示您问题在什么地方。

1 0
0 69
文章
· 三月 19, 2024 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - SQL优化器使用的统计数据

上个帖子写了TuneTable的执行, 提到了SQL优化器使用的那些统计数据, 这里逐一的介绍一下这些统计项。了解它们看懂和分析SQL执行计划的基础。 如果您不需要做单个查询的优化工作,可以调过这部分内容。

表的统计项

  • Extent Size: 表的大小,也就是记录数。在执行多表关联(JOIN)的查询时,SQL优化器会根据Extent Size值,从数据量最小的表来开始执行查询。

您还需要了解:表创建的时候Extent Size会获得一个初始值,而之后的插入修改数据并不自动修改这个值。而只有执行TuneTable才会修改这个。 这也就是为什么没有执行过TuneTable的数据库SQL性能好不了的原因。下图中的Patient表,可以看出有1,000,000记录

0 0
0 125