Covid-19 肺部 X 射线分类和 CT 检测演示 关键字:COVID-19,医学影像,深度学习,PACS Viewer 和 HealthShare。

目的

在这场史无前例的新冠疫情笼罩之下, 我们竭尽所能为客户提供支援,同时利用先进的 AI 技术观察着不同的疫情战线。

去年,我简单提及了一个深度学习演示环境。 在这个漫长的复活节周末,我们就来看一看现实世界的图像,在 Covid-19 肺部 X 射线数据集上测试运行一些深度学习模型以进行快速分类,并见证这类用于 X 射线甚至 CT 的工具如何通过 docker 等方式快速部署到云端,实现及时的“AI 分诊”并协助放射科医生。

这只是一个 10 分钟的快速笔记,希望通过简单的方法帮助各位上手实践。

1 0
0 540
问题
· 一月 25, 2021
docker deploy

生产环境要使用80端口访问服务器,采用直接部署程序的方式,是在Linux服务器上同时部署HealthConnect和Apache。类似的现在想要使用Docker技术,在一台服务器上部署了HealthConnect和Apache容器,该如何配置http.conf文件,使80端口的请求转到HealthConnect上呢?如果这种方式不可行,有没有其他方法呢?

2 1
0 181

本文提供了一个参考架构,作为示例说明基于 InterSystems Technologies(适用于 CachéEnsembleHealthShareTrakCare 以及相关的嵌入式技术,例如 DeepSeeiKnowZen Zen Mojo)提供的强大性能和高可用性应用。
Azure 有两种用于创建和管理资源的不同部署模型:Azure Classic Azure Resource Manager 本文中的详细信息基于 Azure Resource Manager (ARM) 模型。

0 0
0 322