文章
· 五月 8, 2021 阅读大约需 8 分钟
将 Python JDBC 连接到 IRIS 数据库 - 快速笔记

关键字:Python,JDBC,SQL,IRIS,Jupyter Notebook,Pandas,Numpy ,机器学习

1. 目的

这是一个用于演示的 5 分钟快速笔记,通过 Jupyter Notebook 中的 Python 3 调用 IRIS JDBC 驱动程序,以经由 SQL 语法从 IRIS 数据库实例读取数据和向 IRIS 数据库实例写入数据。

去年,我发表了关于将 Python 绑定到 Cache 数据库的简要笔记(第 4.7 节)。 如何使用 Python 挂入 IRIS 数据库以将其数据读入 Pandas 数据框和 NumPy 数组进行常规分析,然后再将一些经过预处理或标准化的数据写回 IRIS 中,准备进一步用于 ML/DL 管道,现在可能是时候回顾一些选项和讨论了。

一些立即浮现的快速选项

0 0
0 378
文章
· 四月 24, 2021 阅读大约需 6 分钟
置顶--InterSystems 中文开发者社区精华文章集锦

欢迎大家将相关的经验在这个讨论区分享。

板块 文章列表
征文大赛作品集锦

2022年首届InterSystems 技术征文大赛集锦

2023年第二届InterSystems 技术征文大赛集锦

官方文档

我司即将推出中文官方文档门户,欢迎大家把需要的官方文档发在评论区,我们会优先发布。谢谢!

1 1
3 917
文章
· 四月 14, 2021 阅读大约需 8 分钟
通过 InterSystems IRIS 实现分布式人工智能

什么是分布式人工智能 (DAI)?

试图找到一个“无懈可击”的定义是徒劳的:这个术语似乎有些“超前”。 但是,我们仍然可以从语义上分析该术语本身,推导出分布式人工智能也是人工智能(请参见我们为提出一个“实用”定义所做的努力),只是它分布在多台没有聚合在一起(既不在数据方面,也不通过应用程序聚合,原则上不提供对特定计算机的访问)的计算机上。 即,在理想情况下,分布式人工智能的安排方式是:参与该“分布”的任何计算机都不能直接访问其他计算机的数据和应用程序,唯一的替代方案是通过“透明的”消息传递来传输数据样本和可执行脚本。 与该理想情况的任何偏差都会导致出现“部分分布式人工智能”- 一个示例是通过中央应用程序服务器分发数据, 或者其反向操作。 不管怎样,我们都会得到一组“联合”模型(即,在各自数据源上训练的模型,或者按自己的算法训练的模型,或者同时以这两种方式训练的模型)。

0 0
0 245
文章
· 三月 23, 2021 阅读大约需 1 分钟
为什么要进行自动化机器学习?

AI届的没有免费午餐(No Free Lunch)理论:如果平均到所有问题的话,所有算法是等价的。换句话说,没有单一的“最优”算法。(详细概念请自行搜索)

所以需要对任何特定数据集/问题测试很多不同算法,没有办法能够提前知道哪种算法是最优的。

因此,自动化机器学习帮助用户用多种自动化的用多种主流算法来进行测试,用户能从中选出最优的结果。

0 0
0 116
文章
· 二月 26, 2021 阅读大约需 1 分钟
为什么从Cache迁移到IRIS?

不少客户问我关于从Cache迁移到IRIS的问题。为什么要迁移到IRIS?Cache是优秀的,稳定的,有很好的性能,为什么要迁移到IRIS呢?这些客户是对的,但在过去几年,数字化转型提出了不少新问题、新需求和新挑战,客户需要更灵活、更完整、更前瞻的解决方案,InterSystems公司很有远见地洞察到了这一点,推出了IRIS。
一句话,IRIS是一套数据平台解决方案,它帮助客户和合作伙伴为迎接数字化转型的挑战提供了充足的弹药。

0 0
0 157