文章
· 三月 17 阅读大约需 12 分钟
生成式大语言模型和检索增强生成

近来生成式大语言模型掀起了革命性的AI浪潮。生成式大语言模型是什么原理?我们怎么在业务中利用它?

一. 大语言模型的工作原理

生成式大语言模型是生成式人工智能底层的机器学习模型,是一种用于自然语言处理的深度学习模型。

人工智能、机器学习与大语言模型的关系如下图:

1.1 为什么我们称之为大语言模型?

大语言模型的“大”体现在多个方面:

2 0
0 501
文章
· 三月 16 阅读大约需 10 分钟
IRIS 2024.1新特性 - JSON_TABLE

IRIS 2024.1已经发布,它引入了诸多新特性,其中之一是JSON_TABLE。

数据表达和交换中,JSON已经是日益主流的存在。在之前的IRIS版本中,可以轻易将JSON数据以对象解析并保存到IRIS,也可以将IRIS数据使用SQL、对象等多种方式输出为JSON。对于得到的JSON序列化的数据,如果我们想通过SQL去解析,甚至进行检索和查询,就可以利用JSON_TABLE这个新特性。

对于一些大规模的JSON序列化数据,例如从FHIR服务器查询获得的FHIR资源Bundle,里面包含了大量数据。例如下面的FHIR查询结果,后面的示例以这个的复杂的JSON作为用例:

0 0
0 47
文章
· 一月 31 阅读大约需 21 分钟
用Java开发互操作产品 - PEX

InterSystems IRIS、Health Connect和上一代的Ensemble提供了优秀的互操作架构,但即便有低代码开发能力,很多开发者还是希望能用自己的技术栈语言在InterSystems的产品上开发互操作产品。

考虑到互操作产品本身的开放性要求和各个技术栈背后庞大的生态价值,InterSystems IRIS和Health Connect提供了Production EXtension (PEX)架构,让开发者使用自己的技术栈语言来开发互操作解决方案。目前PEX支持Java、.net、Python。

这里我们介绍使用Java利用PEX进行互操作产品的开发。

一 InterSystems IRIS上使用Java开发的基础

在进入PEX主题前,需要简单介绍一下Java在InterSystems IRIS上开发的各种技术选项,因为PEX也是以这些技术选项为基础的。

2 0
1 160
文章
· 十二月 7, 2023 阅读大约需 5 分钟
通用TCP业务服务和业务操作

TCP作为OSI 7层的传输层的通信协议,其使用上不像更上层的通信协议那么方便,因为TCP操作的不是数据包,它操作的是数据流。因此有多种将TCP数据流“解释”为数据包(消息)的方法。

InterSystems IRIS提供了多种TCP适配器,用于不同的“解释”,例如EnsLib.TCP.FramedInboundAdapter使用特定的首尾字符做为分隔、EnsLib.TCP.CountedInboundAdapter使用固定的长度进行分隔...

同时,InterSystems IRIS提供了多种开箱即用的TCP业务服务和业务操作,方便接入和发送TCP数据。这里我们介绍常见的使用特定的首尾字符做为分隔的TCP业务服务和业务操作。

1 0
0 130
文章
· 十二月 4, 2023 阅读大约需 9 分钟
通用RESTful 业务服务和业务操作

1. 通用RESTful业务服务和业务操作


InterSystems IRIS 提供了一组通用的RESTful 业务服务和业务操作类,用户无需开发自定义的业务服务和业务操作类,就可以直接向外提供RESTful服务和调用外部的RESTful API。

0 0
2 120
文章
· 十月 26, 2023 阅读大约需 10 分钟
FHIR CDS Hooks

CDS Hooks是FHIR生态下一个决策支持架构,是SMART(Substitutable Medical Applications and Reusable Technologies, 可替代的医学应用和可复用技术)下的一个项目。

FHIR标准下也有一个决策支持相关的模块 - FHIR的Clinical Reasoning模块。它和CDS Hooks是有区别的:

FHIR的Clinical Reasoning模块提供一系列资源模型和工件,用于构建决策支持相关的规则、医嘱集、临床协议和质量指标,并基于此对特定患者和人群进行评估,进而产生决策行为。它构建的是本地决策支持体系。

而CDS Hooks提供一个决策支持架构,打通外部决策支持系统和本地的决策数据源、业务流程。

1 0
0 105
文章
· 十月 23, 2023 阅读大约需 12 分钟
FHIR Profile - FHIR扩展与再约束

FHIR标准提供灵活的扩展与再约束机制 - Profile。到底Profile机制如何工作?什么样的扩展需要用到Profile?怎么建立Profile?


FHIR核心资源模型 - FHIR Core

FHIR发布的资源模型是按80/20原则设计的 - 最常用那80%的用例中需要的数据会被涵盖在FHIR核心资源模型中,这些数据需求可能只是所有用例需要数据的20%;通过对核心资源的扩展和再约束,可以让它们适用于不常见的20%用例和未被涵盖的80%的数据需求。

FHIR发布的资源模型是FHIR核心资源模型(FHIR Core),它们有如下特点:

1. 对象模型 - 有继承关系。所有资源都继承自DomainResource

2. 为了保证最大的适用度,资源中的绝大多数属性的最小基数都是0,意味着它们都可以为空

3. 资源的属性可以通过code(值集)、coding、CodeableConcept(术语)进行取值范围约束

4. 为了防止医疗错误,所有的属性都没有且不能有默认值

当需要对核心资源模型进行扩展和再约束时,FHIR提供了profile机制对所做的扩展和再约束进行画像(描述),这就是profile的意思。

1 0
0 237
文章
· 十月 9, 2023 阅读大约需 4 分钟
FHIR与微服务架构

市场上有太多的技术体系和应用开发架构,C/S、三层架构、面向服务架构… 以三层架构为例,展现层可能是网页或Java/.net客户端、应用层可能是java、.net、Python,数据层可能是SQL、NoSQL、NewSQL。但大多建立的是单体架构应用 – 为特定业务目标从底层数据模型到业务逻辑再到用户界面的一体化设计,也就是孤岛型应用。

单体架构应用最大问题是没有哪一部分是以复用为主要目的设计和建设的,而且和其开发技术体系绑定:

2 0
0 183
文章
· 十月 7, 2023 阅读大约需 19 分钟
国际卫生信息互操作标准发展简史

卫生信息和其它信息化一样,经历了数码化、数字化到当今的数字化转型,卫生信息互操作一直伴随左右。

数码化(digitization):国内90年代开始,HIS全面铺开,卫生信息进入数码化时代。数码化初期业务集中在HIS上,互操作需求不高,点对点接口可以满足绝大多数需求。

数字化(digitalization):在2000年之后,各种专科系统、尤其是电子病历的诞生,医保和新农合的实施,要求卫生信息共享交换,以提高流程自动化水平。互操作需求爆发,2007年集成平台开始进入市场,卫生信息化进入数字化时代。

数字化转型(digital transformation):2014年,国内正式进入移动互联网时代;次年《全国医疗卫生服务体系规划纲要(2015—2020年)》发布,卫生信息化的服务对象(服务于医护技到服务于患者)和业务形态(临床管理到患者服务)都发生了翻天覆地的变化,开始步入数字化转型的时代。它对互操作提出了更高的要求 - 利用互操作,增强全员参与,为卫生服务创造新价值、发展新业务,推动医疗机构持续数字化转型。

可以说,卫生信息互操作在整个的卫生信息产业中愈发重要。

国际卫生信息互操作发展了30年,国内也发展了20年,但卫生信息互操作依然是一个挑战。

知史而明鉴,识古而知今。我们看看国际卫生信息互操作发展的历程,对未来的卫生信息互操作有什么借鉴。

卫生信息互操作标准的要素

HIMSS把信息互操作/集成定为4个不同的级别:

基础级别,仅仅打通了系统间进行数据通讯的通道;

结构级别,在基础级别上,定义了数据交换的格式和语法;

语义级别,建立在行业通用的基础模型和数据编码上,使用标准化的行业语义来定义数据元素,使用标准的值集。因此语义级别的互操作是全行业可以理解并有确定行业意义的互操作级别。或者说语义级别的互操做才是基于标准的互操作。

组织级别,通常都是由国家、行业协和和行业标准开发组织开发的。它加入了政策、社区、法律等方面的考虑,分析了通用的业务流程和工作流,在此基础上设定了参与互操作各方的角色、权限,服务和知情同意策略等。我们的互联互通,就是组织级别的互操作。

目前的卫生信息互操作项目多数停留在结构级别。只有达到语义级别的信息互操作/集成,才是标准化的信息互操作/集成,才能降低实施成本和提高实施效率。

做到语义级别的互操作标准并不容易,首先是消除语义歧义、其次行业普遍认可、再次是要覆盖行业用例并具有适应行业不断变化需求的弹性。

图片来源:EuroVulcan Conference 2023

先说消除语义歧义。要在信息交换时消除语义歧义,需要在语言、语法、词义、句法等多方面努力,而且涉及到数据的颗粒度。尤其在医疗行业,完整、消除歧义才能保障卫生信息准确和医疗行为安全!

HIMSS认为要消除语义歧义、达到语义级互操作性,需要基于五位一体的语义标准,包含:

  • 词汇/术语标准:依靠结构化的词汇、术语、代码集和分类系统来表示健康概念。例如ICD-10SNOMED-CTLOINC RxNorm行业里典型的词汇和术语标准。
  • 内容标准:描述信息交换中,数据内容的结构和组织。而HL7 CDAHL7 V2C-CDA都是行业内容标准。
  • 传输标准:定义了计算机系统、文档架构、临床模板、用户界面和患者数据链接之间交换的消息格式和传输方式。传输方式确定了卫生信息交换的“推”和“拉”方式。DICOMIHE等都是传输标准。
  • 隐私和安全标准:是确定谁、何时、出于何种目的、使用哪种个人健康信息的权利,以及如何护健康信息的机密性、可用性和完整性的标准。美国的HIPAA和欧洲的GDPR都是关于隐私和安全的标准。
  • 标识符标准: 是用来唯一标识患者、机构、医护技、设备等实体的方法。例如咱们互联互通里用到的OID和美国的护士标识NCSBN ID …

并非消除了语义歧义的标准就能被广泛接受和认可,需要行业标准化组织的推动,实现厂商中立,毕竟互相竞争的厂商很难接受对方的企业标准。回顾一下行业里流行的标准,无论是术语标准、还是消息和文档标准,都是行业里标准化组织发布的,其中最有名的就是HL7。

从这个行业标准发展史可以看到,毫无例外的,标准先从术语标准开始,例如ICD、SNOMED,历史都非常久远。而我们常用的HL7 V2有30多年历史了,CDA和V3也20年左右了。从2014年,HL7推出了FHIR。这些标准是为何以及如何演进的?

互操作标准发展要满足不断变化的行业需求和用例

先看看90年代初的互操作的业务环境,就像下图那么简单:医疗机构还处在数码化向数字化转换的时代 - HIS等业务系统开始大规模部署以实现流程和数据的数码化,同时产生了非常有限的跨业务系统的流程自动化 – 信息集成需求。实时卫生信息交换的需求基本都在医疗机构内部(局域网,那时候WWW刚诞生),而院内的业务系统数量非常有限、且系统边界清晰,使用的用户基本就是医护技和管理人员,需要的互操作流量规模可以准确预测。而且系统互操作的技术手段非常有限,基本就是文件传输、串并口、socket,而SOAP(2000年)、RESTful(2000年)、甚至HTTP(1996年)等协议都还没有产生。

HL7 V2

这就是HL7 V2消息交换标准产生的时代,和所面临的互操作业务需求:它将业务事件和业务事件的上下文封装在消息结构中,在系统边界中传递这些消息。

业务系统边界清晰,一般用消息引擎来路由和转发这些消息,从而不打破系统边界。各个业务系统只要能接收/发送并处理这些标准化的消息即可。

近距离看一个HL7 V2消息示例,它是一个由多种分隔符分割的字符串,由区段和字段构成:区段是一组分类的数据,例如PID是患者信息区段;而字段是每个数据项,例如患者标识(在PID区段里)是“1182594^^^系联医院&1^^系联医院&1”,它本身也是一个结构,用于放标识符(1182594)和标识分配机构(系联医院)等信息。

而事件就是消息头区段里的ORM^O01,其中ORM代表业务域”通用医嘱消息”,O01代表事件“医嘱请求”。

消息头区段 MSH|^~\&|HIS|系联医院|系联实验室|系联医院|202302160002||ORM^O01|demo22903||2.5|382|||||UTF8

患者区段 PID||1182594^^^系联医院&1^^系联医院&1|||李小明||19570320|M|||北京市朝阳区建国门外大街乙12号2702

就诊区段 PV1|22903|O|心内科||||35030099^唐^南|||MED|||||||35019964^郑^顾樽||22903|||||||||||||||||||||||||202302160002^M

保险区段 IN1|1|65110116^城镇职工医保|

医嘱区段 ORC|NW|MS:1182594:1|||SC||||202302160002^M||||||||||||||||||||LAB

医嘱明细区段 OBR|1|MS:1182594:1||4548-4^糖化血红蛋白^loinc

为什么HL7 V2会是这种难读的格式?因为它是窄带时代的产物,当时通讯带宽有限,数据格式需要紧凑,通常仅用分隔符分割,以减少传输的数据量(相较与XML,通常能减少80%以上的数据),如今在一些检验检查设备的通讯协议中还能看到类似的设计。同时,从早期直到现在,多数HL7 V2消息是通过socket交换的。这些特征都是90年代互操作的历史印记。

HL7 V2是按模式复用的角度设计的颗粒度,也就是说它的颗粒度是信息区段。但并不是所有的信息区段都有独立的含义和复用的价值,例如区段TQ1、TQ2定义服药时间和用药途径,没有单独存在的可能和直接复用的价值。

另外,V2消息的字段随意性很大,相同内容可以放在不同的字段甚至区段里面;用户还被鼓励创建自定义的Z区段进行消息体扩展。也就是说它标准化程度不高,需要实施的双方事先约定好数据具体怎么放才能实现信息交换。同时V2术语约束机制很弱。

HL7 V3 和 CDA

世纪之交,卫生信息化发展提速,电子病历和各种专科系统崛起,更极大推动了卫生信息的交换和流程自动化的需求,同时对交换的语义标准化程度有了更高的要求。这需要更严谨的互操作业务抽象和术语约束。卫生信息正式进入数字化时代,也正是在这一时期,诞生了包括IHE、CDA、HL7 V3在内的众多互操作标准。

从模型抽象的角度看,应该全面包含用例模型、信息模型和交互模型,但V2的关注点基本在交互层面,对其它层面的抽象很弱。

由此,携着其著名的参考信息模型(RIM)方法论,V3在2005年横空出世,对业务场景进行分析,抽象交互逻辑,从参考信息模型到领域信息模型,再到精细化消息信息模型,最终产生需要的消息模型。模型以XML进行序列化,相较于V2,进步了许多。

这套方法论产生的V3消息标准化程度很高。但为了覆盖所有业务需求,RIM是高度抽象的(难于理解的);同时V3方法论是“按约束设计”(design by constraint),试图涵盖所有应用场景,避免自定义扩展,这使其越来越复杂、越来越庞大,而且用户没有RIM基础很难自己对其扩展,从一个极端走向另一个极端。

V3的高复杂性和高使用门槛,造成了它事实上的失败,没有成为V2的替代者,就像一些专家评论的 – “RIM创建了语义互操作性,但没有创建临床互操作性“。

注意,国内有一些实践中,甚至没有严格遵循V3发布的XML schema,直接用代码拼出XML字符串,也不做消息校验,这不算标准的V3。

同样在世纪之交,很多业务需要即时性不那么强、但数据更完整的交换 - 小结性质的临床文档交换。在这个领域,最主流的是CDA临床文档架构标准。CDA源于 1996 年就开始的临床文档中结构化标记工作,并在1997年并入HL7,随后使用V3参考信息模型来完善和发展。大家可能注意到前面的图上CDA早于V3发布,就是这个原因。

CDA临床文档架构,用于描述结构化文档,同时允许插入供人类解读的非结构化部分。它产生的文档具有上下文完整、可持久保存、可管理、可认证等特性。CDA文档和衍生的CCD文档广泛用于医疗机构边界间和医疗系统边界间的文档交换,或作为具有法律效力的临床文档依据保存在文档仓库。

CDA是成功的,可能是V3基础上唯一成功的部分,但它不能解决细数据颗粒度访问的需求。

IHE

虽然RIM基于业务场景、角色、触发事件等分析,但它的交付物 – 消息模型并无法执行流程与角色的约束。

服务用于业务场景里流程、角色的表达,功能内聚,可以通过企业服务总线(ESB)来协同,比消息路由规则更直观、更灵活,更适合实现业务流程的自动化。通常服务是比较大尺度的业务表达,服务标准广泛采纳的难度在于它实际上是规范业务流程和业务方法,而实际上多数机构的业务并不那么一致。

IHE(Integrating the Healthcare Enterprise)是国际上比较流行而成功的卫生信息交换服务规范。它是1998年,由HIMSS 和RSNA(北美放射学协会)发起,由一帮放射学和IT技术专家创建的。它最初为放射影像信息共享提供技术框架,以解决即便有了DICOM后在不同厂商系统间放射影像信息交换的标准和流程上的困难,后面逐步涵盖了越来越多的业务场景。IHE使用已经发布的卫生信息内容标准和术语标准,例如DICOM、HL7、LOINC等,来构建自己的服务框架,利用企业服务总线来协同这些服务,可以实现比消息交互更功能内聚的互操作架构:

• 服务本身封装了事件、上下文

• 服务针对于场景定义了流程和角色

• 适合跨清晰的业务系统边界间信息交换

• 服务有多种互操作模式:

• Web 服务本身是可互操作的,这意味着任何客户端都可以直接调用 Web 服务

• 服务可以通过企业服务总线(ESB)来协同,比消息路由规则更直观、更灵活

IHE分析每个业务场景(Profile),将业务场景中参与方定义为角色(Actors),场景中角色的交互定义为事务(Transactions)。例如跨机构的文档共享业务场景中,有4个不同的角色:文档源、文档注册器、文档使用者和文档仓库。而交互事务有注册、查询、获取等

IHE能在服务标准上取得成功,在于它先在参与的用户基础上规范业务,然后再基于规范的业务发布相应的服务,也就是说,使用IHE需要先认同它的规范出的业务。

IHE一直随着业务、技术和互操作标准的发展而不断演进,从最初使用DICOM + HL7 V2,到最新基于FHIR;从最初的影像信息交换到最近的患者穿戴设备的数据交换。例如在2007年,IHE创建了基于HL7 V3的跨机构档案共享的Profile – XDS.b,之后又推出了基于FHIR的诸多移动端服务。

1 0
0 332
文章
· 六月 11, 2023 阅读大约需 7 分钟
统一语义数据平台

数据平台一直在进化:从数据中心到数据中台,离散的数据资产得到进一步梳理和整合、按业务封装数据和操作数据的方法,并逐步提供了企业统一的访问、更新、检索、查询等数据服务。

然而市场上不乏听到数据平台的成功案例,却鲜见这些案例得到大规模推广。原因是什么呢?

一. 传统数据平台建设的挑战

传统数据平台的数据模型基于各自厂商的理解,缺乏统一行业数据模型和行业语义。可供参考的国内卫生信息数据元、数据集标准并非完整的行业语义,例如没有业务实体模型和数据元关系定义。传统的数据平台建设通常根据业务域,围绕数据应用需求组织数据。经常看到按业务域划分为CDR(临床数据中心)、ODR(运营数据中心)、RDR(科研数据中心)......

这造成了几个挑战:

1. 按业务域、而非业务实体来划分数据,虽然方便相应的业务域数据分析,但跨业务域重叠的业务实体数据,例如患者,需要跨数据中心同步。这些同步由于数据模型上的差异,往往非全息拷贝。随着同步次数越多,跨数据中心的数据越失真,造成数据资产多源不统一、数据资产一致性问题和时效性问题。

2. 数据平台产品语义表达上参差不齐,业务用户依赖数据工程师对数据理解和操作,无论是统计分析还是机器学习,海量的实施工作无法满足业务敏捷性要求;

3 0
3 716
文章
· 二月 22, 2023 阅读大约需 12 分钟
InterSystems IRIS的面向对象数据库特性

面向对象编程的优势

在应用程序开发时,我们使用的大多数开发语言都是面向对象编程 object-oriented programming (OOP)语言,例如大家熟悉的Java、.NET。而TIOBE的2023年2月的最新开发语言流行排行榜上,前5大语言都是面向对象编程语言,连排名第六的Visual Basic都有了越来越多的OO特性:

2 0
0 360
文章
· 十二月 2, 2022 阅读大约需 9 分钟
通过智能数据编织应对数据挑战

1.数据的价值

数据的核心价值是帮助我们决策。

我们无时无刻不在决策,大到战略决策——为一家新医院选址,还有战术决策——鉴别产品的目标市场或抵押贷款审批,更频繁的是操作决策——决定患者的手术方案或患者药物的调整。

这些决策要求不同的决策速度,传统的数据中心已经能较好地帮助我们做战略决策、战术决策,甚至一些操作决策。但新的业务需求要求我们的决策速度越来越快,甚至借助机器学习自动为我们做出即时的决策,例如批准还是拒绝一笔信用卡交易或基于算法自动交易。

无论是人工决策还是基于机器学习的自动决策,决策的依据是数据。数据的速度和质量决定了决策的速度和质量。要支持决策,需要数据具有如下特征:

(1)完整 :关联且具有完整上下文;

(2)干净 :数据质量没有问题;

(3)及时 :在决策点上没有延迟。

1 0
0 163
文章
· 十月 22, 2022 阅读大约需 4 分钟
通用SQL业务服务和业务操作

1. 新的系统SQL业务服务/业务操作

接连SQL数据源和操作SQL数据目标是常见的集成业务场景。使用SQL适配器监控SQL数据源和操作SQL目标库时,我们需要开发自定义BS或BO,写不少代码。例如开发自定义SQL服务需要:

1. 开发响应消息类,用于承接SQL快照数据;

2. 开发自定义业务服务BS类,用于将SQL快照按字段赋值给对应的消息,并将消息发送给目标(业务流程或业务操作)。

而要开发自定义SQL操作,更麻烦些:

1. 开发请求和响应消息类,用于向BO传输数据和接收返回数据;

2. 开发自定义业务服务BO类,设置消息响应表,根据不同请求消息类型编写方法;

3. 在方法中根据请求消息数据拼写SQL语句;

4. 在方法中将SQL执行结果存入响应消息。

虽然很简单,但编程过程枯燥乏味。而且当修改SQL语句时,还要修改对应的消息类和BS/BO类。

从2021.2开始,InterSystems IRIS增加了2套系统通用SQL业务服务和SQL业务操作:

3 0
1 507
文章
· 十月 20, 2022 阅读大约需 5 分钟
在集成产品中压缩解压文件

在InterSystems IRIS医疗版里有一个文件压缩解压的适配器HS.Util.Zip.Adapter和对应的文件压缩解压业务操作HS.Util.Zip.Operations。集成产品可以使用它们进行文件的压缩和解压操作。这2个类的联机文档说明较少,这里介绍它们的使用方法。

1. 基础配置

InterSystems IRIS使用操作系统的压缩和解压缩能力,因此需要注册操作系统执行压缩解压的命令。

在管理门户的Health标签页下,选中配置注册(Configuration Registry):

在其中增加2个注册项目:

\ZipUtility\UnZipCommand\ZipUtility\ZipCommand,分别代表解压和压缩命令。适配器HS.Util.Zip.Adapter会检查这2个注册项并得到相应的命令。各个操作系统的命令并不一样,示例如下:

3 0
1 72
文章
· 十月 6, 2022 阅读大约需 10 分钟
集成产品的业务行为监控

最近一些用户问到监控集成平台业务行为查询的问题,例如如何查询服务的平均耗时、发生错误的服务数量...

业务行为监控对于集成平台来说非常重要,可以帮助我们:

  • 监控系统健康情况 — 查看系统性能表现。例如发现队列积压和长耗时的消息处理,都可能是性能问题的表现。
  • 排查异常 — 通过查看业务行为数据,帮助我们判断特定的业务组件配置是否是造成性能瓶颈的主要原因。
  • 做业务规划 — 通过业务行为数据,了解各个业务量变化情况,并辅助我们做业务规划。
  • 做硬件规划 — 通过长期跟踪消息吞吐量的变化了解性能的变化和业务量的增长,进而辅助我们做硬件计划,避免出现在性能问题。

仅提供这些查询是很容易的,但要更好地监控集成平台的业务行为,需要更深入的了解InterSystems集成架构。

1 0
1 228
文章
· 九月 22, 2022 阅读大约需 25 分钟
精华文章--漫谈应用集成的现在与未来

关注FHIR的大侠们估计都注意到了,FHIR更新了它支持的互操作范式,除了消息、文档、服务、API这4种,增加了2个:资源仓库、订阅。前面4个好理解,为什么资源仓库和订阅会成为FHIR的新的互操作范式?互操作与应用集成是什么关系?

这里借FHIR的新互操作范式,聊聊应用集成,看看集成平台是什么?有什么样的集成方案?以及怎么评价不同的方案。

9 0
4 593