IRISHealth以其完备且系统化的安全特性在医疗行业的数据库中独树一帜,这些特性包括安全认证、安全授权、安全审计、数据加密以及安全配置。其中数据传输无疑是其中最重要的一环。为此,IRISHealth采用了SSL/TLS技术来对传输的数据进行加密,有效保障了从IRIS数据平台的超级服务数据传输、Telnet服务数据传输、java/.net/Studio客户端的访问数据传输、MIRROR与DB的数据传输,到DBServer和ECPApp之间的数据传输的安全性。


本文是在两个IRISHealth2021实例之间进行ECP服务通信的示例,一个作为DBServer,一个作为ECPApp,两个实例之间通过使用SSL/TLS的ECP协议进行TCP的加密传输通信。

1.IRIS的DB和ECP环境:

DBServer

ECPApp

14 5
3 215

在当今充满活力的医疗保健行业,获取全面、精简的医疗记录对于做出明智的决策至关重要。人工智能驱动的健康图表应用程序是一个开创性的解决方案,旨在为医生提供一种获取和理解健康数据的有效方式。

主要功能

- 全面的数据检索: 健康图表应用程序通过提取各种健康数据,包括过敏症、病情、手术、免疫接种、药物、家族史、社会史、生命体征和化验结果,超越了传统记录。这种全面的视角可以让人们深入了解患者的健康历程。

- 通过人工智能增强洞察力:通过利用人工智能的力量,Health Chart 应用程序可以智能处理数据。人工智能引擎将原始信息转化为可操作的洞察,生成健康摘要和风险评估。这不仅节省了医生的宝贵时间,还提高了患者护理质量。

0 0
0 4

InterSystems 常见问题系列FAQ

如果要让超时功能失效, 在DSN设置查询超时为disabled:

Windows Control Panel > Administrative Tools > Data Sources (ODBC) > System DSN configuration

如果勾选了Disable query timeout , 超时就会失效.

如果想在应用侧修改,你可以在ODBC API 层设置:在连接数据源之前,调用ODBC SQLSetStmtAttr功能设置SQL_ATTR_QUERY_TIMEOUT 属性

0 0
0 6

InterSystems 常见问题FAQ

如果您想在InterSystems 产品启动时执行一个操作系统可执行文件,命令或者程序,可以在SYSTEM^%ZSTART routine里面写明流程 ( %ZSTART routine在 %SYS 命名空间里面创建).

在 SYSTEM^%ZSTART 里面写代码之前, 请确保他可以在任何情况下能正常工作

如果 ^%ZSTART routine 写的不对,或者没有响应或者发生错误,InterSystems 产品可能会无法启动。

更多信息,请参考一下文档。

0 0
0 4
文章
· 七月 7 阅读大约需 4 分钟
InterSystems 常见问题系列 如何检查数据大小

InterSystems 常见问题系列FAQ

InterSystems 产品里数据 (表、对象、实例数据) 是存在global 变量里的。
每个global 的数据大小可以从管理门户中中点击属性查看Management Portal > System > Configuration > Local Database > Globals page, 然后在global 属性页点击计算大小Calculate Size 按钮。
你可以在终端上调用^%GSIZE 来在命名空间里显示数据大小,方法如下.

0 0
0 5
文章
· 七月 1 阅读大约需 2 分钟
新数据类型 VECTOR 的限制

在 OEX 最近一次编程竞赛之后,我有一些令人惊讶的发现。
几乎所有的应用程序都是基于人工智能与预制 Python 模块的结合。
但深入研究后发现,所有示例都使用了 IRIS 的相同技术组件。

从 IRIS 的角度来看,无论是搜索文本还是搜索图像或其他模式都是一样的。 其底层基本都是一样的。

这让我想起了我家里的情况。我的妻子和女儿对家里的大量裙子、衬衫和其他衣服的信息进行了整理。
但无论如何进行整理、分类、归档,我依然通过和我的妻子和女儿说话,来确定我的穿着。
无论怎样包装,其结果都是如此。

回到这次竞赛比赛:
同样的 IRIS 技术内容,却有很多花哨的包装。
每个人都在同一条高速公路上奔跑。没有人提到它有什么限制。

于是我试着深入挖掘,找出新数据类型 VECTOR 的使用限制。
所有向量都有两个基本参数
- 静态 DATATYPE:"整型integer"(或 "int")、"double"、"十进制decimal"、"字符串 "和 "时间戳"。
- 半动态 LEN(gth): > 0 通常也称为 POSITION;纯整数。

0 0
0 9
文章
· 七月 1 阅读大约需 4 分钟
在InterSystems ObjectScript中使用 VECTORs

迄今为止,我看到的大多数使用向量vector的示例,将它只作为 SQL 中的一种功能,尤其是围绕 VECTOR_Search 的 3 个函数。
* TO_VECTOR()
* vector_dot_product ()
* vector_cosine ()

iris-vector-search 演示包中隐藏着一个非常有用的摘要。
从那里,你可以通过多个链接找到所需的一切。

我还缺少更多的 VECTOR 方法,于是在 Idea Portal 上提出了相关请求。

接着,我想起每个 SQL 方法或存储过程都有一堆 ObjectScript 代码。
于是我开始搜索,下面就是我的研究的一些总结:

0 0
0 9

通过 REST API 将前端 React 应用程序与 IRIS 数据库等后端服务集成,是构建健壮网络应用程序的强大方法。但是,开发人员经常遇到的一个障碍是跨源资源共享(CORS)问题,由于网络浏览器强制执行的安全限制,该问题可能会阻止前端访问后端的资源。在本文中,我们将探讨在将 React Web 应用程序与 IRIS 后端服务集成时如何解决 CORS 问题。

创建Schema

我们首先定义一个名为 Patients 的简单Schema:

1 0
0 62

低代码挑战

想象一下那个场景。您正在 Widgets Direct 愉快地工作,这是互联网上首屈一指的小部件和小部件配件零售商。您的老板有一些毁灭性的消息,一些客户可能对他们的小部件不太满意,我们需要一个帮助台应用程序来跟踪这些投诉。为了让事情变得有趣,他希望代码占用非常小,并挑战您使用 InterSystems IRIS 以少于 150 行代码交付应用程序。这可能吗?

免责声明:本文记录了一个非常基本的应用程序的构建,为了简洁起见,省略了安全性和错误处理等细节。该应用程序仅供参考,不得用于任何生产应用。本文使用IRIS 2023.1作为数据平台,并非所描述的所有功能在早期版本中都可用

第 1 步 - 定义数据模型

我们首先定义一个新的干净的命名空间 - 带有代码和数据数据库。虽然所有内容都可以位于 1 个数据库中,但将它们拆分以便于数据刷新。

0 0
0 29
文章
· 六月 11 阅读大约需 8 分钟
使用 IRIS 以及 langchain 构建 问答聊天机器人

这篇文章介绍了使用由支持 langchain 框架的IRIS来实现问答聊天机器人,其重点介绍了检索增强生成(RAG)。

文章探讨了IRIS中的向量搜索如何在langchain-iris中完成数据的存储、检索和语义搜索,从而实现对用户查询的精确、快速的响应。通过无缝集成以及索引和检索/生成等流程,由IRIS驱动的RAG应用程序使InterSystems开发者能够利用GenAI系统的能力。

为了帮助读者巩固这些概念,文章提供了Jupyter notebook一个完整的问答聊天机器人应用程序,以供参考。

什么是RAG以及它在问答聊天机器人中的角色

1 0
0 43
文章
· 六月 10 阅读大约需 2 分钟
类定义中如何使用列式存储

列式存储是 InterSystems IRIS 提供的一项较新的技术。与传统的基于行的存储不同,它通过将数据存储在列而不是行中来优化查询处理,从而实现更快的访问和检索相关信息。

下面是使用SQL创建此类表的例子

1 0
0 59
文章
· 五月 17 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - 真实案例分享

最近有某国内三甲医院为满足评级和飞行检查要求,希望提升HIS和IRIS的SQL查询效率,客户和实施工程师整理了一个慢查询的SQL列表, 有一些查询比较慢, 查询时间在甚至大于60分钟。

在我们和厂商共同努力下,对整个库的SQL查询做了优化。 下表是记录了我们在进行了大部分优化工作后的结果,您可以看到大多查询从几十分钟减少到了几十秒甚至1秒以内。其中有几个慢到几分钟的查询,最后经过细调, 也把查询耗时减少到了一分钟以内。 优化的效果还是很明显的。

这里我分享一下操作的要点,以便给其他有同样问题的客户一个思路。

其实如果您看过我前面的帖子,应该已经有了基本的概念。我就把工作流程总结一下,其实就这么几个步骤:

步骤一:

2 0
0 149
文章
· 五月 15 阅读大约需 4 分钟
IRIS/Caché SQL优化经验分享 - 优化关键字

SQL查询优化器一般情况下能给出最好的查询计划,但不是所有情况都这样,所以InterSystems SQL还提供了一个方式, 也就是在查询语句里加入optimize-option keyword(优化关键字), 用来人工的修改查询计划。

比如下面的查询:

SELECT AVG(SaleAmt) FROM %PARALLEL User.AllSales GROUP BY Region

其中的%PARALLEL, 就是最常用的优化关键字, 它强制SQL优化器使用多进程并行处理这个SQL。

您可以这样理解: 如果查询优化器足够聪明,那么绝大多数情况下,根本就不需要优化关键字来人工干预。因此,您也一定不奇怪在不同的IRIS/Caché版本中, 关键字的表现可能不一样。越新的版本,应该是越少用到。比如上面的%PARALLEL, 在Caché的大多数版本中, 在查询中加上它一般都能提高查询速度,而在IRIS中,尤其是2023版本以后, 同样的SQL查询语句,很大的可能查询优化器已经自动使用多进程并行查询了,不再需要用户人工干预了。

因此,先总结有关优化关键字的要点:

0 0
0 66

%SYS.Journal.Record 类有一个查询(query), List, 可以列出Journal文件中记录的数据修改历史。例如,要查询谁对global节点^QP(1,2)做过修改,可以使用如下代码。它查询Journal文件(输入参数pFilePath)中的global节点(输入参数pSearchGlobal)的操作:

2 1
2 285

SQL性能监控是DBA最重要的日常工作。经常被问起:"Caché/IRIS怎么发现慢SQL"? 答案很简单: 到管理门户的SQL页面,点开如下的“SQL语句“子页, 您能看到这个命名空间的所有执行过的SQL语句,知道每个SQL语句执行了多少次,平均执行时间是多少, 被那个客户端编译的,第一次执行是那一天等等。

请看下面的截图

图中的各个栏目基本都不需要解释,有个别的内容在这里总结一些:

  • 表/视图/存储过程名称:列出这个查询使用的所有的表/视图/存储过程的名字。如果你想看某个表有关的查询,可以使用上面的过滤器

  • 位置(Location) : 对于动态查询, 列出所使用的缓存的查询的类名,对于嵌入SQL(Embedded SQL)查询,列出使用的routine名字。

0 2
0 62
文章
· 四月 17 阅读大约需 1 分钟
[视频] 与 InterSystems 一起释放机器学习的力量

Hey Community,

Play the new video on InterSystems Developers Bilibili官方频道:

与 InterSystems 一起释放机器学习的力量

//player.bilibili.com/player.html?aid=1553341786&bvid=BV181421d73a&cid=1509585441&p=1
[这是一个嵌入式链接,但由于您拒绝了访问嵌入式内容所需的 Cookie,您无法直接在网站上进行查看。要查看嵌入式内容,您需要在 Cookie 设置中接受所有 Cookie。]

0 0
0 28
文章
· 四月 16 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - SQL索引分析器

索引分析器工具用来分析索引的使用情况,对DBA和开发者非常有用。 他们需要知道那些查询进行了全表扫描,那些查询缺失了索引, 而那些索引从来又从来没有被用过。多余的索引降低系统性能,浪费了磁盘空间。

索引使用情况

到“管理门户”的" 系统 > SQL 性能工具 > SQL 索引分析器", 点击“索引使用情况”, 您将看到这样的图

执行SQL语句查询会带来更多的灵活性。上面的查询可以写成下面这个SQL,

SELECT TableName, indexname, UsageCount
FROM %SYS_PTools.UtilSQLAnalysisDB order by usagecount desc

2016年以后的Caché版本就已经有了'索引使用情况'的查询。使用管理门户没有区别, 但SQL语句不同,使用的是比较老的类和表名,各位请参考文档。

0 0
0 75
文章
· 四月 15 阅读大约需 3 分钟
IRIS/Caché SQL优化经验分享 - SQL性能分析工具

SQL Performance Analysis Toolkit,或者叫SQL性能分析工具,并不是给维护人员使用的。

在RIS文档里是这么说的: 这个工具包里的工具收集SQL执行的详细信息,用来找出一个查询计划的特殊问题。 使用这些信息,开发人员改善这个查询的效率。 它可以非常大的增加服务器的开销。..., 它不应该被持续执行。

要做分析,首先您需要打开一个采集“SQL runtime Statistics"的开关来收集详细信息,这个开关默认的状态是OFF。 文档里说: The SQL Performance Analysis Toolkit offers support specialists the ability to profile specific SQL statements or groups of statements.

这里的"support specialists"指的是厂家的技术支持人员。

因此,总结如下:

0 0
0 31
文章
· 四月 10 阅读大约需 7 分钟
IRIS/Caché SQL优化经验分享 - 查询计划(Query Plan)

为什么要读Query Plan, 在线文档中有句话是这么说的:

While the SQL compiler tries to make the most efficient use of data as specified by the query, sometimes the author of the query knows more about some aspect of the stored data than is evident to the compiler. In this case, the author can make use of the query plan to modify the original query to provide more information or more guidance to the query compiler.

翻译一下是这样:系统给你的查询计划并不总是最好的,如果您能对查询计划,可以人工做更精细的优化。

0 0
0 53
文章
· 四月 9 阅读大约需 7 分钟
Open AI 与 IRIS 集成 - 文件管理

人工智能不仅限于通过带有说明的文本生成图像,或通过简单的指示创建叙事。
您还可以制作图片的变体,或为已有图片添加特殊背景。
此外,您还可以获得音频转录,无论其语言和说话者的语速如何。
让我们来分析一下文件管理是如何工作的。

0 0
0 36
文章
· 九月 30, 2022 阅读大约需 11 分钟
使用Prometheus监控Cache集群

使用Prometheus监控Cache集群

Executive Summary

生产级别的Cache集群往往由多个Cache实例组成,而Cache自带的管理界面不能满足对整个集群的监控,因此在实际使用中,往往需要投入人力对实例进行性能巡检。即便如此,这种巡检模式实时性低、告警的漏报错报率高、对既往数据追溯能力差。针对Cache/IRIS集群管理的这一缺憾,本文提出以Prometheus监控Cache集群的方案,最终实现了对集群全实例监控指标的自动化采集,以及准实时监控数据展示和告警提示。

监控大屏3.主机实例监控

24 8
0 684
文章
· 十二月 27, 2023 阅读大约需 2 分钟
百讲知识点索引

百讲知识点索引

简介

  • B站已更新截止到2023.12.31之前的所有百讲课程,总计261讲。
  • 什么是百讲?百讲是一个主要介绍IRISCache编程知识的免费课程。
  • 课程的特点是,将每一个知识点,都会用示例演示出来、了解原理,而不是仅仅告诉有这个功能。
  • 每周一期,每期会请到有多年开发经验的老师来给大家讲解课程。
  • 百讲观看地址:https://www.bilibili.com/video/BV1cw41147xr/

在这里插入图片描述

3 1
0 96
文章
· 三月 22 阅读大约需 4 分钟
IRIS/Caché SQL优化经验分享 - Collation(排序规则)

这个帖子内容有点深。如果您读的有困难,请直接跳过这篇,对绝大多数IRIS/Caché使用者,它一点都不重要。

数据库表的Collation(排序规则)本来是一个非常简单的概念。说到它是因为曾经发现过由Collation引起的性能问题。

我试图用一句话来解释数据库的排序规则:

  • 绝大多数数据库因为业务查询需要,保存的字符型数据是不分大小写的。当你执行一个 order by, group by, distinct,like等等条件查询时,因为这个不分大小写的collation,你得到的结果也不分大小写。例如,对名字做group by, James, james一定是在一组。
  • 如果非要区分大小写,会在查询的时候使用一个函数
  • 因为要操作非英语的字符集,以及可以被当作字符看待的数字类型,适应不同的排序规则,一个数据库可能有很多种Collation类型。

很简单,在表一级定义Collation的SQL语句是:

0 0
0 61
文章
· 三月 21 阅读大约需 2 分钟
IRIS 向量搜索

这是在 IRIS 中完全运行向量搜索演示的尝试。
没有外部工具,您需要的只是终端/控制台和管理门户。
特别感谢Alvin Ryanputra作为他的软件包iris-vector-search的基础
灵感和测试数据的来源。
我的软件包基于 IRIS 2024.1 版本,需要注意您的处理器功能。

我尝试用纯 ObjectScript 编写演示。
仅描述向量的计算是在嵌入式Python中完成的

计算 2247 个记录的 384 维向量需要时间。
在我的 Docker 容器中,它正在运行 01:53:14 来完全生成它们。

1 1
0 43
文章
· 三月 21 阅读大约需 1 分钟
IRIS/Caché SQL优化经验分享 - Bitmap Extent

Bitmap索引是指对某个,或者某几个字段建立的bit map(位图映射)。如果是对整个表的记录,也就是表的%ID做位图映射,得到的特殊的bitmap索引在IRIS/Caché里被称为Bitmap Extent。

建立Bitmap Extent索引的目的就是加快COUNT(*)的执行。提高了多少呢? 下面两个显示的是最简单的全表查询花费的时间:

  • 不使用Bitmap Extent : 1.3810s
  • 使用Bitmap Extent: 0.0038

相差有几百倍。

0 0
0 46
文章
· 三月 20 阅读大约需 2 分钟
IRIS/Caché SQL优化经验分享 - 复合索引的使用

复合索引(combined index)也被称为组合索引或者联合索引,顾名思义,就是一个索引建立在多个字段上。当用这些字段为条件查询时,相比对每个字段单独做索引,复合索引能给出很好的性能,还能减少索引的数量。

为什么能减少索引的数量? 通常来说,也就是在其他数据库,联合索引符合”最左匹配“的原则。在BING上搜索“复合索引,得到的第一个搜索结果的这篇文章就说的就很简单明了:

下面这个SQL语句在 列X,列Y,列Z 上建立了一个复合索引。

mysql
CREATE INDEX 索引名 ON 表名(列名X, 列名Y, 列名Z);

其实这相当于建立了三个索引,分别是:

0 0
0 57