这次我想谈一谈不专门针对 InterSystems IRIS 的东西,不过如果你想使用 Docker,并且你工作环境是安装了 Windows 10 专业版或企业版的 PC 或笔记本电脑,那么我认为这个很重要。

你可能知道,容器技术基本上来自于 Linux 世界,如今在 Linux 主机上发挥出最大潜能。 那些平常使用 Windows 的人会看到,Microsoft 和 Docker 在过去的几年做出了重要的努力,让我们可以在 Windows 系统上以非常简单的方式运行基于 Linux 映像的容器... 但是生产系统不支持这种方式,这是个大问题,如果我们要将持久性数据保留在主机系统中的容器之外,这样做非常不可靠... 这主要是由于 Windows 和 Linux 文件系统之间的巨大差异导致的。 最终,Docker for Windows 自身使用了一个小型 linux 虚拟机 (_MobiLinux) 来运行容器... 此操作对于 Windows 用户是透明的,而且效果完美,只要你不需要你的数据库比容器存活的时间更长...

0 0
0 881

假设你想了解 InterSystems 在数据分析方面能提供什么。 你研究了理论,现在想要进行一些实践。 幸运的是,InterSystems 提供了一个项目:Samples BI,其中包含了一些很好的示例。 从 README 文件开始,跳过任何与 Docker 相关的内容,直接进行分步安装。 启动虚拟实例 安装 IRIS,按照说明安装 Samples BI,然后用漂亮的图表和表格让老板眼前一亮。 到目前为止还不错。

但是不可避免地,你需要进行更改。

0 0
0 364

Hi 开发者们!一年一度的 InterSystems IRIS 开发者大奖赛已启动!

我们非常高兴地邀请大家参加此次编程大赛——使用 InterSystems IRIS 数据平台构建开源解决方案!

🏆 InterSystems 2023 年度编程大奖赛🏆

时间: 2023年6月12日-7月9日(美国东部时间)

奖金池: 26,000 美元

2 2
1 271

亲爱的社区开发者们,大家好!

我们很高兴地宣布,新一轮InterSystems开发者竞赛开启了!

🏆 InterSystems 编程大赛:开发者工具 🏆

请提交具有如下特性的应用程序——能够加速开发、贡献更多高质量代码、帮助用户测试、部署、支持或监控基于InterSystems IRIS的解决方案。

间: 2021年3月29日- 4月25日

Total prize: $8,500

2 3
0 266
文章
· 三月 25, 2021 阅读大约需 4 分钟
为什么 COVID-19 对机器学习也有危险?(Part I)

几个月前,我在 MIT Technology Review 读到一篇很有意思的文章,作者解释了新冠疫情如何给全球 IT 团队带来关乎机器学习 (ML) 系统的难题。

这篇文章引起我对 ML 模型部署后如何处理性能问题的思考。

我在一个 Open Exchange 技术示例应用 (iris-integratedml-monitor-example) 中模拟了一个简单的性能问题场景,并提交到 InterSystems IRIS AI Contest。 读完这篇文章后您可以去看看,如果喜欢,就请投我一票吧! :)

0 0
0 254

介绍

在最近几篇文章中的一些文章中,我谈到了 IRIS 和 Python 之间的类型,很明显,从一侧到另一侧访问对象并不是那么容易。

幸运的是,已经完成了创建SQLAlchemy-iris 的工作(点击链接在 Open Exchange 上查看它),这使得 Python 访问 IRIS 对象的一切变得更加容易,我将展示它的启动器。

谢谢@Dmitry.Maslennikov

安装中

要安装,只需打开具有管理员权限的终端并输入

pip install sqlalchemy-iris

如果需要,这还将为您安装先决条件。

1 0
0 241

嘿开发者,

我们想邀请您参加我们的下一场比赛,该比赛致力于创造有用的工具,让您的开发伙伴们的生活更轻松

🏆 InterSystems 开发者竞赛:Tool(工具)🏆

提交有助于加快开发速度、贡献更多定性代码并有助于使用 InterSystems IRIS 测试、部署、支持或监控您的解决方案的应用程序。

时间: 2023 年 1 月 23 日至 2 月 12 日(美国东部时间)

奖金池: 13,500 美元

0 0
1 231

许多使用InterSystems IRIS的用户在调试代码的时候习惯使用命令行的方式,比如运行一个函数查看输出或者查看代码运行过程中保存在global中的数据等等。

对于将 InterSystems IRIS 安装在 Windows 操作系统的用户,只需要点击右下角图标选择Terminal 就可以很方便的使用。

但是对于将其安装到 Linux 或者Docker 容器中的用户,要使用命令行却不那么方便,下面我将会介绍在我们 Openexchange 中的一个应用 -- Web Terminal。

也就是说可以在网页中直接执行Terminal中的命令。

2016-09-18_212035

或者查看SQL执行结果:

0 0
0 230
文章
· 七月 12, 2023 阅读大约需 4 分钟
当 GPT 与 FHIR 碰撞出火花:利用Open API 的规范力量

FHIR 通过提供标准化数据模型来构建医疗保健应用程序并促进不同医疗保健系统之间的数据交换,彻底改变了医疗保健行业。由于 FHIR 标准基于现代 API 驱动的方法,因此移动和 Web 开发人员更容易使用它。然而,与 FHIR API 交互仍然具有挑战性,尤其是在使用自然语言查询数据时。

1 0
0 213
文章
· 一月 5, 2021 阅读大约需 4 分钟
增强型日志监视器

各位开发者们大家好!

此前,我向各位介绍了一个非常好用的运行分析监控面板,它能使消息处理过程中的关键指标可视化,例如入站/出站消息的数量和平均处理时间等。

现在,我想用一项许多人已熟悉的工作流程,来展示一个增强型日志监视器——将警告信息作为Production中的消息来处理。我们可以通过创建路由规则来实现对告警消息的过滤和路由,并运用预先构建的组件(例如电子邮件适配器等)来发送粒度级别的通知。

如你所知,监视和管理警告信息是确保任何应用程序平稳运行的关键。对诸如HealthShare和IRIS医疗版这样支撑医疗系统运转的一级应用程序和集成引擎来说对告警信息的处理更显得尤为重要。

1 0
0 211
文章
· 四月 13, 2022 阅读大约需 7 分钟
用Globals 作为图数据库来存储和抽取图结构数据

image

这篇文章是对我的  iris-globals-graphDB 应用的介绍。
在这篇文章中,我将演示如何在Python Flask Web 框架和PYVIS交互式网络可视化库的帮助下,将图形数据保存和抽取到InterSystems Globals中。

建议

 

第一步 : 通过使用Python 原生SDK建立与IRIS Globals的链接

 #create and establish connection
  if not self.iris_connection:
         self.iris_connection = irisnative.createConnection("localhost", 1972, "USER", "superuser", "SYS")
                                     
  # Create an iris object
  self.iris_native = irisnative.createIris(self.iris_connection)
  return self.iris_native

 

第二步 : 使用 iris_native.set( ) 功能把数据保存到Globals 里     

#import nodes data from csv file
isdefined = self.iris_native.isDefined("^g1nodes")
if isdefined == 0:
    with open("/opt/irisapp/misc/g1nodes.csv", newline='') as csvfile:

 reader = csv.DictReader(csvfile)
 for row in reader:
    self.iris_native.set(row["name"], "^g1nodes", row["id"])

 #import edges data from csv file
 isdefined = self.iris_native.isDefined("^g1edges")
 if isdefined == 0:
    with open("/opt/irisapp/misc/g1edges.csv", newline='') as csvfile:
 reader = csv.DictReader(csvfile)
 counter = 0                
 for row in reader:
    counter = counter + 1
    #Save data to globals
    self.iris_native.set(row["source"]+'-'+row["target"], "^g1edges", counter)  

 

第三步: 使用iris_native.get() 功能把节点和边缘数据从Globals传递给PYVIS

 #Get nodes data for basic graph    
  def get_g1nodes(self):
        iris = self.get_iris_native()
        leverl1_subscript_iter = iris.iterator("^g1nodes")
        result = []
        # Iterate over all nodes forwards
        for level1_subscript, level1_value in leverl1_subscript_iter:
            #Get data from globals
            val = iris.get("^g1nodes",level1_subscript)
            element = {"id": level1_subscript, "label": val, "shape":"circle"}
            result.append(element)            
        return result

    #Get edges data for basic graph  
    def get_g1edges(self):
        iris = self.get_iris_native()
        leverl1_subscript_iter = iris.iterator("^g1edges")
        result = []
        # Iterate over all nodes forwards
        for level1_subscript, level1_value in leverl1_subscript_iter:
            #Get data from globals
            val = iris.get("^g1edges",level1_subscript)
            element = {"from": int(val.rpartition('-')[0]), "to": int(val.rpartition('-')[2])}
            result.append(element)            
        return result

 

Step4: Use PYVIS Javascript to generate graph data

<script type="text/javascript">
    // initialize global variables.
    var edges;
    var nodes;
    var network;
    var container;
    var options, data;
  
    // This method is responsible for drawing the graph, returns the drawn network
    function drawGraph() {
        var container = document.getElementById('mynetwork');
        let node = JSON.parse('{{ nodes | tojson }}');
        let edge = JSON.parse('{{ edges | tojson }}');
     
        // parsing and collecting nodes and edges from the python
        nodes = new vis.DataSet(node);
        edges = new vis.DataSet(edge);

        // adding nodes and edges to the graph
        data = {nodes: nodes, edges: edges};

        var options = {
            "configure": {
                "enabled": true,
                "filter": [
                "physics","nodes"
            ]
            },
            "nodes": {
                "color": {
                  "border": "rgba(233,180,56,1)",
                  "background": "rgba(252,175,41,1)",
                  "highlight": {
                    "border": "rgba(38,137,233,1)",
                    "background": "rgba(40,138,255,1)"
                  },
                  "hover": {
                    "border": "rgba(42,127,233,1)",
                    "background": "rgba(42,126,255,1)"
                 }
                },

                "font": {
                  "color": "rgba(255,255,255,1)"
                }
              },
            "edges": {
                "color": {
                    "inherit": true
                },
                "smooth": {
                    "enabled": false,
                    "type": "continuous"
                }
            },
            "interaction": {
                "dragNodes": true,
                "hideEdgesOnDrag": false,
                "hideNodesOnDrag": false,
                "navigationButtons": true,
                "hover": true
            },

            "physics": {
                "barnesHut": {
                    "avoidOverlap": 0,
                    "centralGravity": 0.3,
                    "damping": 0.09,
                    "gravitationalConstant": -80000,
                    "springConstant": 0.001,
                    "springLength": 250
                },

                "enabled": true,
                "stabilization": {
                    "enabled": true,
                    "fit": true,
                    "iterations": 1000,
                    "onlyDynamicEdges": false,
                    "updateInterval": 50
                }
            }
        }
        // if this network requires displaying the configure window,
        // put it in its div
        options.configure["container"] = document.getElementById("config");
        network = new vis.Network(container, data, options);
        return network;
    }
    drawGraph();
</script>

 

第五步: 从app.py 主文件调用上面的代码

#Mian route. (index)
@app.route("/")
def index():
    #Establish connection and import data to globals
    irisglobal = IRISGLOBAL()
    irisglobal.import_g1_nodes_edges()
    irisglobal.import_g2_nodes_edges()

    #getting nodes data from globals
    nodes = irisglobal.get_g1nodes()
    #getting edges data from globals
    edges = irisglobal.get_g1edges()

    #To display graph with configuration
    pyvis = True
    return render_template('index.html', nodes = nodes,edges=edges,pyvis=pyvis)    

下面是关于此项目的 介绍视频:

0 0
0 203

亲爱的社区开发者们,大家好!

欢迎积极参与新一轮InterSystems开发者竞赛!

随着 InterSystems IRIS 2021.2 预览版 的发布和全新的 LOAD DATA 功能,我们希望将其与最新的竞赛(数据集)结合起来!

🏆 InterSystems 数据集竞赛🏆

竞赛时间: 2021年12月27日-2022年1月16日

奖金总额: $9,450

0 0
0 173

你好,开发者!

你们中的许多人在 Open Exchange 和 Github 上发布了 InterSystems ObjectScript 库。

但对于开发者来说,如何简化项目的使用和协作呢?

在本文中,我想介绍一种简单方法,只需将一组标准文件复制到你的仓库中,就可以启动任何 ObjectScript 项目和对其做出贡献。

我们开始吧!

0 0
0 171
文章
· 九月 5, 2023 阅读大约需 11 分钟
HTTP请求监控响应时间

嗨,开发者们!

今天我想谈谈一个让我感到困难的话题。我相信你们中的很多人一定已经遇到过这种情况(所谓的“瓶颈”)。由于这是一个广泛的主题,因此本文将仅重点关注识别可能导致缓慢问题的传入 HTTP 请求。我还将向您提供我开发的一个小工具来帮助识别它们。

我们的软件变得越来越复杂,处理来自不同来源的大量请求,无论是前端还是第三方后端应用程序。为了确保最佳性能,必须有一个能够记录一些关键测量的日志系统,例如响应时间、global引用的数量以及每个 HTTP 响应执行的代码行数。作为工作的一部分,我参与了 EMR 软件的开发以及事件分析。由于用户负载主要来自 HTTP 请求(REST API 或 CSP 应用程序),因此在发生普遍缓慢问题时进行此类测量的需求变得显而易见。

0 0
0 156

2020 年最佳 Open Exchange 开发者和应用程序! 大家好,

2020 年是优秀应用程序丰收的一年!

将近 400 个应用程序已上传到 InterSystems Open Exchange200 多个应用程序在 2020 年上传到我们的应用程序库!

我们很高兴向大家介绍最佳 Open Exchange 开发者和下载量最大的应用程序,这些应用程序绝对值得一试!

让我们仔细看一下我们的英雄们和卓越的应用程序:

0 1
0 152